VISIONARY
SOFTWARE

VS128COBOL

REFERENCE
MANUAL

COPYRIGHT MANUAL STATEMENT

THIS MANUAL IS COPYRIGHTED AND ALL RIGHTS ARE RESERVED. THIS
DOCUMENT MAY NOT, IN WHOLE OR IN PART BE COPIED, PHOTOCOPIED,
REPRINTED, TRANSLATED, REDUCED TO ANY ELECTRONIC MEDIUM OR MACHINE
READABLE FORM OR REPRODUCED IN ANY MANNER WITHOUT PRIOR CONSENT IN
WRITING FROM K.A. ALEXANDER, VISIONARY SOFTWARE.

COPYRIGHT SOFTWARE PRODUCT STATEMENT
THIS SOFTWARE PRODUCT IS COPYRIGHTED AND ALL RIGHTS ARE RESERVED BY:

K.A. ALEXANDER
CIVIC CENTER OFFICE PLAZA
25882 ORCHARD LAKE ROAD, SUITE L9
FARMINGTON HILLS, MICHIGAN 48018

THE DISTRIBUTION AND SALE OF THIS PRODUCT ARE INTENDED FOR THE
ORIGINAL PURCHASER ONLY. LAWFUL USERS OF THESE PROGRAMS ARE HEREBY
LICENSED ONLY TO READ THESE PROGRAMS FOR THE MEDIUM INTO THE MEMORY
OF A COMPUTER SOLELY FOR THE PURPOSE OF EXECUTING THE PROGRAMS.
SECURITY COPIES OF THE PROGRAMS MAY BE MADE ONLY FOR THEIR OWN USE.
DUPLICATING FOR ANY OTHER PURPOSE, COPYING, SELLING OR OTHERWISE
DISTRIBUTING THIS PRODUCT IS A VIOLATION OF THE LAW.

VS128COBOL MANUAL 2.6

PREFACE

It is assumed that the readers of this manual are familiar with the
Commodore 128 computer and general programming techniques.

The names used in this publication are not of individuals living or
otherwise. Any similarity or likeness of the names used in this
publicatioin with the names of any individuals, living or otherwise,
is purely coincidental and not intentional.

Visionary Software believes that the information described in this
manual is accurate and reliable, and much care has been taken in its
preparation. However, no responsibility, financial or otherwise, is
accepted for any consequences arising out of the use of this
material. The information contained herein is subject to change.
Revisions may be issued to advise of such changes and/or additions.

Correspondance regarding this document should be addressed directly
to Visionary Software, Civic Center Office Plaza, 25882 Orchard Lake
Road, Suite L9, Farmington Hills, Michigan 48018, Attn:
Documentation Department.

VE128COBOL MANUAL 2.6

ACKNOWLEDGEMENT

COBOL is an industry language and is not the property of any company
or group of companies, or of any organization or group of
organizations.

No warranty, expressed or implied, is made by any contributor or by
the CODASYL Programming Language Committee as to the accuracy and
functioning of the programming system and language. Moreover, no
responsibility is assumed by any contributor, or by the commi ttee,
in connection therewith.

The authors and copyright holders of the copyrighted material used
herein,

Flow-matic (trademark of Sperry Rand Corporation). Programming for

the UNIVAC I and II, Data Automation Systems copyrighted 1958, 1959,
by Sperry Rand Corporation; IBM Commercial Translator Form Number F

28-8013, copyrighted 1959 by IBM;FACT, DSI 27A5260-2760, copyrighted
1960 by Minneapolis-Honeywell.

have specifically authorized the use of this material in whole or in
part, in the COBOL specifications. Such authorization extends to
the reproduction and use of COBOL specifications in programming
manuals or similar publications.

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

CUABWUN

VS128COBOL MANUAL 2.6

TABLE OF CONTENTS

Introduction .
The Nature of COBOL IN GENERAL .
COBOL Advantages « « « « « o o« &
VS128C0OBOL Implementation Notes.
Hardware Consideration
VS128C0OBOL Source Language

Section
Section
Section
Section
Section
Section
Section

1--Program Organization.
2--Language Concepts . .
3-—-Editing Format. . . .
4--IDENTIFICATION DIVISION
S——ENVIRONMENT DIVISION.
6--DATA DIVISION . . .
7—-PROCEDURE DIVISION.

ACCEPT

ACCEPT-1-KEY . .

ADD. . . ¢ & « »

CLOSE.

DEBUG-BREAK. .

DEBUG-TRACE-OFF .
DEBUG-TRACE-ON .
DISPLAY. . . . &
DIVIDE
EXIT
FILTER-NUMERIC
GO0 TO. .
IF . . .
MOVE . .
MULTIPLY
OPEN . .
PERFORM.
READ . .
SET. . .
STOP RUN
SUBTRACT
WRITE. .

VE128C0OBOL. MANUAL 2.6

Chapter 7 —- Start Up/Operating Instructions.

Chapter 8 —-

Chapter 9 --
Chapter 10 -

APPENDIX A -
APPENDIX B -
APPENDIX C -

Main Menu
CRUNCH

DEBUG
START-PROG . .
RESUME-PROG. .
SINGLE-ON. . .
SINGLE-OFF . .
EXIT
BREAK 1. . . .
BREAK 2. . . .
BREAK 3. . . .
OPTIONS. . . .
TRACE-ON-LINE .
TRACE-OFF-LINE.

TRACE-FAST . .
TRACE-SLOW . .
TRACE-ON . . .
TRACE-OFF. . .
RESET-0OPTIONS .
EDIT.

V§128C0OBOL Statements

DIRECTORY. . .

LIST . .« . . .
DELETE
SYNTAX
AUTO
SAVE
RESEQUENCE . .
PRINT-ON . . .
PRINT-OFF. . .
EXIT « =« « . .
GET « « « « &« « .
NEW-NAME. . . .
NEW-PROG/EDIT . .
PRINT-ON.
PRINT-OFF
RUN
SAVE.

Converting VS128COBOL To

VS64C0OBOL

Converting VS64COBOL To VS128COBOL

Sample Programs/Excercises .

Reserved Words.
Language Summary. . . .

0
o

VS128C0OBOL Manual 2.6 Page 1

CHAPTER 1
INTRODUCTION

This manual provides a complete description of the VS128COBOL
System (Visionary Software COMMODORE 128 Common Business Oriented
Language) as implemented for use on the Commodore 128 computer or
equivalent. The VS128C0BOL programming language is designed along
the guidelines of the American National Standards Institute (ANSI)
X3.23-1974.

The language is an easy to learn subset of the ANSI 1974
standard Level 1 with appropriate extensions to utilize COMMODORE
128 features as well as providing high level program debugging
capabilities. With VS128C0OBOL there is no need for the user to be
concerned with machine language, memory addressing or hexadecimal
notation. All debugging is performed at the source language
(symbolic) level as opposed to the machine language level.

The VS5128BCOBOL software system is a combination of an Editor,
Compiler, Interpreter and Symbolic Debugger. These features have
been designed with ease of learning and ease of use in mind to
provide a powerful programming development tool for general business
applications or as an educational aid for COBOL students.

VS128C0OBOL programs can easily be converted to run on the
Commodore 64 computer when used with VS64COBOL. Existing VS64COBOL
programs can also be converted to run on the Commodore 128 with
VE128COBOL. See Chapters 9 and 10 for more details

Commodore &4 and Commodore 128 are registered trademarks of
Commodore Business Machines, Inc.

VS128C0OBOL Manual 2.6 Page 2

CHAPTER 2

THE NATURE OF COBOL IN GENERAL

COBOL is the most widespread commercial programming language in
use today. The reasons for its vast success will be discussed
below.

The word COBOL is an abbreviation for Common Business Oriented
Language. It is a Business Oriented computer language designed for
commercial applications. The rules governing the use of the
language make it applicable for commerical problems.

COBOL is a computer language that is common to many computers.
That is most computers can process a COBOL program with minor
variations.

The universality of COBOL, therefore, allows computer users
greater flexibility. A company is free to use computers of
different manufacturers while retaining a single programming
language. Similarly, conversion from one model computer to a more
advanced or newer one presents no great problem. Computers of a
future generation will also be equipped to use COBOL.

Since its creation in 1959, the COBOL language has undergone
extensive refinement in an effort to make it more standardized. The
American National Standards Institute (ANSI), an association of
computer manufacturers and users, has developed an industry-wide
standard COBOL.

Thus the meaning of the word COBOL suggests two of its basic
advantages. It is common to most computers, and it is commercially
oriented. There are, however, additional reasons why it is such a
popular language.

COBOL is an Englishlike language. All instructions are coded
using English words rather than complex codes. To add two numbers
together, for example, we use the word ADD. Another example of a
COBOL statement is:

MULTIPLY HOURS-WORKED BY HOURLY-WAGE GIVING GROSS-WAGES

The rules for programming in COBOL conform to many of the rules for
writing in English, making it a relatively simple language to learn.
It, therefore, becomes significantly easier to train programmers.

In addition, COBOL programs are written and tested in far less time
than programs written in other computer languages.

Thus the Englishlike quality of COBOL makes it easy to write
programs. Similarly, this quality makes COBOL programs easier to
read. Such programs can generally be understood by nondata
processing personnel. The business executive who knows little about
computers can better understand the nature of a programming job
simply by reading a COBOL program.

VS8128C0OBOL Manual 2.6 Page 3

CHAPTER 3

COBOL ADVANTAGES

The long list of COBOL advantages is derived chiefly from its
intrinsic quality of permitting the programmer to state the problem
solution in English prose, and thus provide automatic program and
system documentation. When users adopt well-chosen data—-names
before attempting to program a system, maximum documentational
advantages of the language described herein are obtained.

To a computer user, VS128COBOL offers the following major
advantages:

1. Expeditious means of program implementation providing a
high degree of programmer productivity.

2. Accelerated programmer training and simplified retraining
requirements.

3. Reduced conversion costs when changing from a computer of
one manufacturer to that of another.

4. Significant ease of program modification/enhancements due
to the high level of readability.

S. Documentation which facilitates nontechnical management
participation in data processing activities.

6. A comprehensive source program diagnostic capability which
includes tracing, break points and single step features.

VS128COBOL Manual 2.6 Page 4

CHAPTER 4

VE128C0OBOL IMPLEMENTATION NOTES

A program written in VS128COBOL, called a source program, is
accepted as input by the VS128COBOL software system. The system
verifies that each source statement is syntactically correct, and
then converts them into an intermediate condenced representation.

The intermediate program can then be executed on the Commodore
128 System using the VS128COBOL Interpreter. The interpreter causes
the system hardware to perform the operations specified by the
intermediate program and thus the source program.

VS128COBOL Manual 2.6 Page S5

CHAPTER S

HARDWARE CONSIDERATIONS

-—COMMODORE 128 Computer or equivalent

==0One to four Commodore 1541 or 1571 disk drives or equivalent
——0ne optional Commodore 1525 printer or equivalent

——0One 40 or 80 column screen

VS128C0BOL Manual 2.6 Page 6

CHAPTER &

SECTION 1
PROGRAM ORGANIZATION

VE128C0OBOL SOURCE PROGRAM DIVISIONS

Every VS128C0OBOL source program must contain these four divisions in
the following order:
IDENTIFICATION
ENVIRONMENT
DATA
PROCEDURE

The IDENTIFICATION DIVISION identifies the program. 1In
addition to required information, the programmer may include such
optional pieces of information as the date written and programmer’s
name for documentation purposes. This division is completely
machine-independent.

The ENVIRONMENT DIVISION specifies the equipment being used.
It contains computer descriptions and some information about the
files the program will use.

The DATA DIVISION contains not only file and record
descriptions describing the data files that the program manipulates
or creates, but also the individual logical records which comprise
these files. The characteristics or properties of the data are
described in relation to a standard data format rather than an
equipment-oriented format. Therefore, this division is to a large
extent, computer-independent. While compatibility among computers
cannot be absolutely assured, careful planning in the data layout
will permit the same data descriptions, with minor modification, to
apply to more than one computer.

The PROCEDURE DIVISION specifies user-supplied steps for
computer execution. These steps are expressed in terms of
meaningful English words, statements, sentences, and paragraphs.
This division of a VS128C0OBOL program is often referred to as the
"program". In reality, it is only part of the total program, and
alone is insufficient to describe the entire program. This is true
because repeated references must be made (either explicitly or
implicitly) to information appearing in the other divisions. This
division, more than any other, allows the user to express thoughts
in meaningful English. Concepts of verbs to denote actions, and
sentences to describe procedures are basic, as is the use of
conditional statements to provide alternative paths of action.

V6§128C0OBOL Manual 2.6 Page 7

REGQUIRED HEADERS

The standard for VS128COBOL requires that a program consist of
certain divisions, sections, and fixed paragraph names known as
headers.

The following elements are the minimum required for a
VS128C0OBOL program:

IDENTIFICATION DIVISION.
FROGRAM-ID. MINIMUM.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER C128.
OBJECT-COMPUTER C128.
DATA DIVISION.
PROCEDURE DIVISION.
STARTUP.
STOP RUN.

VS128C0O0BOL Manual 2.6 Page 8

SECTION 2
LANGUAGE CONCEPTS

GENERAL

As stated in Section 1, VS128COBOL is a language based on
English and is composed of words, statements, sentences, and
paragraphs. The following paragraphs define the rules to be
followed in the creation of this language. The use of the different
constructs formed from the created words is covered in subsequent
sections of this document.

LANGUAGE DESCRIPTION NOTATION

A nearly universal form of notation exists for COBOL reference
manuals. This manual uses that notation as described in the
paragraphs that follow.

The apostrophe (’) is used to delimit characters with specific
meaning. Other than its use in this manual as a delimiter, it has
no specific use in the COBOL language.

KEY WORDS

All underlined upper—case words are key words and are required
when utilizing related functions. Omissions of key words will cause
error conditions at compilation time. An example of key words
follows:

IF data—-name IS [NOTJ | NUMERIC l

ALPHABETIC(

The key words are IF, NOT, NUMERIC, and ALPHABETIC.
OPTIONAL WORDS

All upper case words not underlined are optional words included
for readability only and may be included or excluded in the source
program. In the preceding example, the optional word is IS.

GENERIC TERMS

All lower-case words represent generic terms which are used to
represent COBOL words, literals, PICTURE character-strings,
comment—-entries, or a complete syntactical entry that must be
supplied in that format position by the programmer. Where generic
terms are repeated in a general format, a number or letter appendage
to the term serves to identify that term for explanation or
discussion.

VvE128C0OBOL Manual 2.6 Page 9

Identifier—-1 and identifier-2 are generic terms in the
following example:

MOVE identifier—1 TO identifier-2
BRACES

The following symbols are braces: <.)'. When words or phrases
are enclosed in braces, a choice of one of the entries must be made.
In the previous example in the subsection titled Key Words, either
NUMERIC or ALPHABETIC must be included in the statement.

BRACKETS

The following symbols are brackets: [1l . Words and phrases
enclosed in brackets represent optional portions of a statement. A
programmer wishing to include the optional feature may do so by
including the entry shown between brackets. Otherwise, the optional

portion may be omitted. [NOTI in the example titled Key Words, is
optional.

LEVEL-NUMBERS

When specific level—-numbers appear in data description entry
formats those specific level—-numbers are required when such entries
are used in a VS128C0B0OL program. In this document, the form
01,02,...,09 is used to indicate level-numbers 1 through 9.

ELLIPSIS

The presence of the ellipsis (three consecutive periods(...)
within any format indicates the position at which repetition may
occur at the programmer’s option. The portion of the format that
may be repeated is defined in the following paragraph.

The ellipsis applies to the words between the determined pair
of delimiters. Given the ellipsis in a clause or statement format,
scanning right to left, determine the right bracket or right brace
immediately to the left of the ...; continue scanning right to left
and determine the logically matching left bracket or left brace.

V§128C0O0BOL Manual 2.6 Page 10

CHARACTER SET

The VS128COBOL character set for the VS5128COBOL System consists of
the following 46 characters:

0 through 9
A through Z
blank or space
+ plus sign
- minus sign or hyphen
X asterisk
/ slash
$ currency sign
. period or decimal point
" quotation mark
(left parenthesis
) right parenthesis

CHARACTERS USED FOR WORDS
The character set for words consists of the following 37 characters:

0 through 9
A through Z
-= (hyphen)

PUNCTUATION CHARACTERS
The following characters may be used for program punctuation:

" quotation mark
(left parenthesis
) right parenthesis
space or blank
. period

EDITING CHARACTERS
The VS128COBOL System accepts the following characters in editing:

$ currency sign
¥ asterisk (check protect)
s Comma
/ slash
B space or blank insert
0 zero insert
+ plus sign
- minus sign
CR credit
DB debit
I zero suppress
. period

LANGUAGE STRUCTURE

The individual characters of the language are concatenated to
form character-strings and separators. A separator may be

VS128C0OBOL Manual 2.6 Page 11

concatenated with another separator or with a character-string.

A character-string may only be concatenated with a separator. The
concatenation of character-strings and separators forms the text of
a source program.

SEPARATORS

A separator is a string of one or more punctuation characters. The
rules for formation of separators are:

l. The punctuation character space is a separator. Anywhere a
space is used as a separator, more than one space may be used.

2. The punctuation character period is a separator when
immediately followed by a space.

3. The punctuation character quotation mark is a separator.

An opening quotation mark must be immediately preceded by the
separator space, a closing quotation mark must be immediately
followed by one of the separators space or period followed by a
space. Q(uotation marks may appear only in balanced pairs delimiting
nonnumeric literals except when the literal is continued.

4. The punctuation characters right and left parentheses are
separators. Parentheses may appear only in balanced pairs of left
and right parentheses delimiting subscripts or indices. The right
parentheses must be followed by a space.

S. The separator space may optionally immediately follow any
separator except the opening quotation mark. In this case, a
following space is considered as part of the nonnumeric literal and
not as a separator.

Any punctuation character which appears as part of the
specification of a PICTURE character—-string or numeric literal is
not considered as a punctuation character, but rather as a symbol
used in the specification of that PICTURE character-string or
numeric literal. PICTURE character-strings are delimited only by
the separtors space or period followed by a space.

The rules established for the formation of separators do
not apply to the characters which comprise the contents of
nonnumeric literals, comment-entries, or comment lines.

CHARACTER-STRINGS

A character-string is a character of sequence of contiguous
characters which forms a VS128COBOL word, literal, PICTURE
character-string, or comment-entry. A character-string is delimited
by separators.

DEFINITION OF WORDS

A VS128BCOBOL word is created from a combination of not more than 30
characters, selected from the following:

0 through 9
A through Z
= (hyphen)

A word is ended by a valid separater. A word may not begin or end

VS128C0OBOL Manual 2.6 Page 12

with a hyphen. (A literal constitutes an exception to these rules,
as explained in a paragraph entitled Literals in this section.) A
word must begin with an alphabetic character.

A user—-defined word is a VS128COBOL word that must be supplied by
the user to satisfy the format of a clause or statement.

TYPES OF WORDS

VS128COBOL contains the following word types: nouns (user—-defined
words), verbs, and reserved words.

NOUNS
Nouns are divided into special categories:

File—name
Record—-name
Data—name
Program—name
Index—name
Paragraph-name

The length of a noun must not exceed 30 characters. For purposes of
readability, a noun may contain one or more hyphens. However, the
hyphen must neither begin nor end the noun (this does not apply to
literals).

All nouns within a given category must be unique, because no other
noun in the same source program has identical spelling or
punctuation. All user-defined words must begin with an alphabetic
character.

File—-Name

A file-name is a noun assigned to designate a set of data items.
The contents of a file are divided into logical records made up of
any consecutive set of data items.

Record—-Name
A record-name is a noun assigned to identify a logical record. A

record can be subdivided into a set of data items, each
distinguishable by a data—-name.

Data—-Name

A data-name is a noun assigned to identify elements within a record
or work area and is used in VS128COBOL to refer to an element of
data, or to a defined data area containing data elements.

VS128COBOL Manual 2.6 Page 13

Index~Name

An index-name is a word that names an index associated with a
specific table (refer to Indexing in this section). An index is a
register, the contents of which represent the character position of
the first character of an element of a table with respect to the
beginning of the table.

Paragraph—Name

A paragraph-name is a word which names a paragraph in the PROCEDURE
DIVISION.

Verbs

A verb in VS128COBOL is a single word that denotes action, such as
ADD, WRITE, or MOVE. All allowable verbs in VS128C0OBOL, with the
exception of the word IF, are English verbs. The usage of the
VS128C0OBOL verbs takes place within the PROCEDURE DIVISION.

RESERVED WORDS

A reserved word is a VS128COBOL word that is one of a specified list
of words which may be used in VS128C0OBOL source programs, but must
not appear in the programs as user—-defined words. Refer to Appendix
B, Reserved Words.

These rules apply to the entire VS12BCOBOL source program; no
exceptions exist for specific divisions or statements.

There are two types of reserved words:

Key words
Optional words

KEY WORDS

A key word is a word whose presence is required in a source program.
Within each format, such words are upper-case and underlined.

Key words are of three types:
l. Verbs such as ADD and READ.
2. Required words which appear in statement and entry formats.
3. Words which have a specific functional meaning such as
SECTION.
OPTIONAL WORDS

Optional words are included in the VS128COBOL language to improve
the readability of the statement formats. These optional words may

VS128C0OBOL Manual 2.6 Page 14

be included or omitted. For example, IF A IS GREATER THAN B...is
equivalent to IF A GREATER B...; the inclusion or omission of the
words IS and THAN does not influence the logic of the statement.

LITERALS

A literal is an item of data whose value is implied by an ordered
set of characters of which the literal is composed. There are two
classes of a literal: numeric and nonnumeric.

NUMERIC LITERAL

A numeric literal is a character-string whose characters are
selected from the digits O through 9, the plus sign (+), the minus
sign (-), and/or the decimal point. Numeric literals may be from 1
to 18 digits in length. The rules for the formation of numeric
literals are as follows:

1. A numeric literal must contain at least one digit.

2. A numeric literal must not contain more than one sign
character. If a sign is used, it must appear as the leftmost
character of the literal. 1If the literal is unsigned, the literal
is positive.

3. A numeric literal must not contain more than one decimal
point. The decimal point is treated as an assumed decimal point,
and may appear anywhere within the literal except as the rightmost
character. If the literal contains no decimal point, the literal is
an integer. An integer is a numeric literal which contains no
decimal point.

If a literal conforms to the rules of the formation of numeric
literals, but is enclosed in quotation marks, it is a nonnumeric
literal and is treated as such by the system.

4. The value of a numeric literal is the algebraic quantity
represented by the characters in the numeric literal. Every numeric
literal belongs to category numeric. Refer to the PICTURE clause in
Section 6 for additional information. The size of a numeric literal
in standard data format characters is equal to the number of digits
specified by the user. The following are examples of numeric
literals:

51678
. 005
+2.629
-.B8479
6287.92

NONNUMERIC LITERAL

A nonnumeric literal may be composed of any allowable character.

The beginning and ending of a nonnumeric literal are both denoted by
a quotation mark. Any character enclosed within quotation marks is
part of the nonnumeric literal. Subsequently, all spaces enclosed
within the quotation marks are considered part of the literal. Two
consecutive quotation marks within a nonnumeric literal cause a
single quotation mark to be inserted into the literal string.

VS128COBOL Manual 2.6 Page 15

All other punctuation characters are part of the value of the
nonnumeric literal rather than separators; all nonnumeric literals

belong to category alphanumeric. Refer to the PICTURE clause in
Section 6.

A nonnumeric literal cannot exceed 120 characters. Examples of
nonnumeric literals are:

Literal on Source Program Level Literal Stored by System
"THE TOTAL PRICE" THE TOTAL PRICE
"-2080.479" -2080.479
"A""B" A"B

Literals that are used for arithmetic computation must be expressed
as numeric literals and must not be enclosed in quotation marks as
nonnumeric literals. For example, "4.4" and 4.4 are not equivalent.
The system stores the nonnumeric literal as 4.4, whereas the numeric
literal would be stored as 0044 if the PICTURE were 999V9, with the
assumed decimal point located between the two fours.

LOGICAL RECORD AND FILE CONCEPTS

The purpose of defining file information is to distinguish between
the physical aspects of the file and the conceptual characteristics
of the data contained within the file.

PHYSICAL ASPECTS OF A FILE

The physical aspects of a file describe the data as it appears on
the input or output media and include such features as:

1. The grouping of logical records within the physical
limitations of the file medium.
2. The means by which the file can be identified.

CONCEPTUAL CHARACTERISTICS OF A FILE

The conceptual characteristics of a file are the explicit definition
of each logical entity within the file itself. In a VS128COBOL
program, the input or output statements refer to one logical record.

It is important to distinguish between a physical record and a
logical record. A VS128COBOL logical record is a group of related
information, uniquely identifiable, and treated as a unit.

A physical record is a physical unit of information whose size and

recording mode are adapted to a particular computer for the storage
of data on a input or output device. The size of a physical record
is hardware dependent and has no direct relationship to the size of
the file of information contained on a device.

The concept of a logical record is not restricted to file data but
is carried over into the definition of working storage. Working

VS§128COBOL Manual 2.6 Page 16

storage may be grouped into logical records and defined by a series
of record description entries.

RECORD CONCEPTS

The record description consists of a set of data description entries
which describe the characteristics of a particular record. Each
data description entry consists of a level-number followed by a
data-name, if required, followed by a series of independent clauses,
as required.

CONCEPT OF LEVELS

A level concept is inherent in the structure of a logical record.
This concept arises from the need to specify subdivisions of a
record for the purpose of data reference. Once a subdivision has
been specified, it may be further subdivided to permit more detailed
data referral.

DATA DESCRIPTION CONCEPTS

The most basic subdivisions of a record, those not further
subdivided, are called elementary items; consequently, a record is
said to consist of a sequence of elementary items, or the record
itself may be an elementary item.

In order to refer to a set of elementary items, the elementary items
are combined into groups. Each group consists of a named sequence
of one or more elementary items. Groups, in turn, may be combined
into groups of two or more groups. An elementary item may belong to
more than one group.

LEVEL-NUMBERS

A system of level-numbers shows the organization of elementary items
and group items. Since records are the most inclusive data items,
level-numbers for records start at 01. Less inclusive data items
are assigned higher (not necessarily successive) level-numbers not
greater in value than 10. There is a special level-number 77 which
is an exception to this rule. Separate entries are written in the
source program for each level-number used.

A group includes all group and elementary items following it until a
level-number less than or equal to the level-number of that group is
encountered. All items which are immediately subordinate to a given
group item must be described using identical level-numbers greater
than the level-number used to describe that group item. Refer to
Section 6 under LEVEL-NUMBER for additional information.

CONCEFT OF CLASSES OF DATA

The five categories of data items (refer to the PICTURE clause in
Section &) are grouped into three classes: alphabetic, numeric, and
alphanumeric. For alphabetic and numeric, the classes and
categories are synonymous. The alphanumeric class includes the
categories of alphanumeric edited, numeric edited, and alphanumeric
(without editing). Every elementary item, except for an index data

VS128C0O0BOL Manual 2.6 Page 17

item, belongs to one of the classes and also to one of the
categories. The class of a group item is treated as alphanumeric
regardless of the class of elementary items subordinate to that
group item. Table 2-1 shows the relationship of the class and
categories of data items.

Table 2-1. Classes of Data

LEVEL OF ITEM CLASS CATEGORY
Alphabetic Alphabetic
Numeric Numeric
Elementary Numeric Edited
Alphanumeric Alphanumeric Edited
Alphanumeric
Alphabetic
Numeric
Nonelementary Alphanumeric Numeric Edited
(Group) Alphanumeric Edited
Alphanumeric

ALGEBRAIC SIGNS

Algebraic signs fall into two categories: operational signs, which
are associated with signed numeric data items and signed numeric
literals to indicate algebraic properties; and editing signs, which
appear on edited reports to identify the sign of the item.

Operational signs are represented as defined under symbol ’S’ of the
PICTURE clause. Refer to the PICTURE clause, General Rule B8, the
'S’ symbol in Section 6.

Editing signs are inserted into a data item through the use of the
sign control symbols of the PICTURE clause.

STANDARD AL IGNMENT RULES

The standard rules for positioning data within an elementary item
depend on the category of the receiving item. These rules are:

1. 1If the receiving data item is described as numeric:

a. The data is aligned by decimal point and is moved to
the receiving character positions with zero fill or truncation on
either end as required.

b. When an assumed decimal point is not explicitly
specified, the data item is treated as if it had an assumed decimal
point immediately following the rightmost character and is aligned
as in step 1a above.

2. If the receiving data item is a numeric edited data item,
the data moved to the edited data item is aligned by decimal point

VS128C0OBOL Manual 2.6 Page 18

with zero fill or truncation at either end as required within the
receiving character positions of the data item, except where editing
requirements cause replacement of the leading zeros.

3. If the receiving data item is alphanumeric (other than a
numeric edited data item), alphanumeric edited or alphabetic, the
sending data is moved to the receiving character positions and
aligned at the left-most character position in the data item with
space fill or truncation to the right, as required.

SUBSCRIPTING

Subscripts can be used only when reference is made to an individual
element within a list or table of like elements that have not been
assigned individual data-names (refer to the OCCURS clause in
Section 6).

The subscript can be represented either by a numeric literal that is
an integer or by a data-name. The data-name must be a numeric
elementary item that represents an integer. When the subscript is
represented by a data—-name, the data—-name may not be subscripted.

The subscript may be signed and, if signed, must be positive. The
lowest possible subscript value is 1. This value points to the
first element of the table. The next sequential elements of the
table are pointed to by subscripts whose values are 2, 3, and so
forth. The highest permissible subscript value, in any particular
case, is the maximum number of occurrences of the item as specified
in the OCCURS clause.

At the time of execution of a statement which refers to a
subscripted table element, each subscript specified is validated.
That is, its value must not be less than one or more than the
maximum number of occurrences as specified by the corresponding
OCCURS clause. If the subscript value is not within this range, an
abnormal termination of the program occurs.

The subscript or set of subscripts that identifies the table element
is delimited by the balanced pair of spearators, left parenthesis
and right parenthesis, following the table element data-name. The
table element data-name appended with a subscript is called a
subscripted data-name or an identifier.

When more than one subscript is required, they are written in the
order of successively less inclusive dimensions of the data
organization. The maximum number of subscripts is 3.

VE128COBOL Manual 2.6 Page 19

General Format:
data-name (subscript-l1 [subscript-2 [subscript-3 1 1)
Example:

In the following record description, to reference the first
year, TOTAL-PER-YEAR (1) is written. If data—-name YEAR contains the
number of the year desired, TOTAL-PER-YEAR (YEAR) is written. If
the data item MONTH contains the specific month desired within the
year specified by YEAR, TOTAL-PER-MONTH (YEAR MONTH) is written.

01 YEAR-TABLE.
02 TOTAL-PER-YEAR OCCURS 10 TIMES.
05 TOTAL-PER-MONTH OCCURS 12 TIMES PIC 999.
77 YEAR PIC 99.
77 MONTH PIC 99.

v5128C0OBOL Manual 2.6 Page 20

INDEXING

References can be made to individual elements within a table of like
elements by specifying indexing for that reference. An index is
assigned to that level of the table by using the INDEXED BY phrase
in the definition of a table. A name given in the INDEXED BY phrase
is known as an index—name and is used to refer to the assigned
index. The value of an index corresponds to the occurrence number
of an element in the associated table. An index-name can be given a
value by the execution of a SET statement.

The advantage to indexing is derived by faster execution time when
multiple references to the same table element is required. In
subscripting a multiply function is needed each time a reference is
made. In indexing the multiply only occurs during execution of the
SET statement and not each time a reference is made.

An index-name has the same internal representation as an index data
item. If a value to be stored in an index—-name or in an index data
item exceeds the largest value that can be held in that index—-name
or index data item, the value is truncated according to the rules
for the occurrence of a size error condition in an arithmetic
statement without a SIZE ERROR phrase.

An index-name assigned to one table may not be used to index another
table.

Direct indexing is specified by using an index-name in the form of a
subscript. When more than one index—-name is required, they are
written in the order of successively less inclusive dimensions of
the data organization as in subscripting.

At the time of execution of a statement which refers to an indexed
table element, the value of each direct index must not be less than
a value which corresponds to the beginning of the first occurrence
of the table element. Also, the index must not be greater than a
value which corresponds to the beginning of the last occurrence of
the table element as specified by the corresponding OCCURS clause.
If the index value is not within this range, the execution of the
program is terminated.

Subscripting is permitted where indexing is permitted.

VE128C0OBOL Manual 2.6 Page 21

SECTION 3
EDITING FORMAT

The rules for spacing given in the following description of the
reference format take precedence over all other rules for spacing.

FIELD DEFINITIONS

The same format is used for all four divisions of a VS128COBOL
program. These divisions must appear in proper order:
IDENTIFICATION, ENVIRONMENT, DATA, and PROCEDURE. The following
paragraphs describe the various fields of this coding form.

SEQUENCE AREA (Record Positions 1-6)

A sequence number, consisting of six digits in the sequence area,
must be used for each source program line.

INDICATOR AREA (Record Position 7)
Column 7 has the following functions:

1. If column 7 contains an asterisk (¥), the remainder of the
record is considered to be a comment and, is not compiled.

2. If column 7 contains a slash (/), the printout is advanced
to the top of the next page before printing, and the record is
considered to be a comment record. This feature is not available at
this time.

3. The presence of a hyphen (-) indicates that the last
nonnumeric literal on the previous record is not complete and is

continued on this record beginning in Area B (positions 12 through
80).

Nonnumeric literals can be split into two or more records. On the
initial record starting from the quotation mark, all information
through position 80 is taken as part of the literal, and on the next
record a quotation mark must be used to indicate the start of the
second part of the literal.

AREA A (Positions 8-11)

DIVISION, SECTION, and PARAGRAPH headers must begin in AREA A. A
division header consists of the division name (IDENTIFICATION,
ENVIRONMENT, DATA, or PROCEDURE), followed by a space, then the word
DIVISION followed by a period.

In the ENVIRONMENT and DATA DIVISIONS, a section header consists of
the section—-name, followed by a space, and then the word SECTION
followed by a period.

A paragraph header consists of the paragraph-name followed by a
period. The first sentence of the paragraph may appear on the same
line as the paragraph header.

VS128C0OBOL Manual 2.6 Page 22

Within the IDENTIFICATION and ENVIRONMENT divisions, the section and
paragraph headers are fixed and only the headers shown in this
manual are permitted. Within the PROCEDURE DIVISION, the paragraph
headers are defined by the user.

Within the DATA DIVISION, the level indicator FD and the level
numbers 01 and 77 must each begin in Area A, followed by the
associated name and appropriate descriptive information.

AREA B (Positions 12-80)

All entries which are not DIVISION, SECTION, or PARAGRAPH headers;
level numbers 01 and 77, or level indicator FD must start in Area B.

When level-numbers are to be indented, each new level-number may
begin any number of spaces to the right of Area A.

BLANK LINES

A blank line is one that contains no entries in the Indicator Area,
Area A, and Area B. A blank line may appear anywhere in the source
program except immediately preceding a continuation line.

PUNCTUATION

The following rules of punctuation apply in VS128COBOL source
programs:

1. A sentence must be terminated by a period followed by a
space. A period must not appear within a sentence unless it is
within a nonnumeric literal or is a decimal point in a numeric
literal or PICTURE string.

2. Two or more names in a series must be separated by a space.

3. A space must never be embedded in a name; hyphens are to be
used instead. A hyphen must not start or terminate a name. For
example:

PAY-DAY (correct)
-PAYDAY (wrong)

VSE128C0OBOL Manual 2.6 Page 23
SECTION 4

IDENTIFICATION DIVISION

GENERAL

The first division of the VS128COBOL source program is the
IDENTIFICATION DIVISION whose function is to identify the source
program and the resultant output. 1In addition, the date the program

was written and other pertinent information can be included in the
IDENTIFICATION DIVISION.

IDENTIFICATION DIVISION STRUCTURE
The structure of this division follows:

IDENTIFICATION DIVISION.

[PROGRAM-ID. program—-name.

[AUTHOR. [comment-entryl ...]1

L INSTALLATION. [comment-entry] ces]

L DATE-WRITTEN. [comment—entry] P

L SECURITY. [comment-entryl ...1]

The following rules must be observed in the formation of the
IDENTIFICATION DIVISION:

1. The IDENTIFICATION DIVISION must begin with the reserved
words IDENTIFICATION DIVISION followed by a period and a space.

2. All paragraph-names must begin in positions 8 through 11
(Area A).

3. The comment-entry must be on the same line as the paragraph
name.

4. The comment-entry can consist of any combination of words
and literals allowed by the VS128COBOL Editor.

PROGRAM-ID PARAGRAPH

The PROGRAM-ID paragraph gives the name by which a program is
identified.

PROGRAM-ID. program—-name.

The following rules must be observed to form PROGRAM-ID paragraphs.

1. The program—name must conform to the rules for formation of
a user—-defined word.

2. The PROGRAM-ID paragraph contains the name of the program

V§128C0B0OL Manual 2.6 Page 24

and must be present in every program.

3. The program-name identifies the source program and all
listings pertaining to a particular program.

4. The program—name must be followed by a period and a space.

VS128C0OBOL Manual 2.6 Page 25

SECTION S
ENVIRONMENT DIVISION

GENERAL

The ENVIRONMENT DIVISION is the second division of a VS128C0OBOL
source program. Its function is to specify the computer being used
for the program compilation, specify the computer to be used for
program execution, and associate files with the computer hardware
devices. Furthermore, this division is also used to specify
input-output areas to be utilized for each file declared in a
program.

ENVIRONMENT DIVISION ORGANIZATION

The ENVIRONMENT DIVISION consists of two sections. The
CONFIGURATION SECTION contains the overall specifications of the
computer. The INPUT-OUTPUT SECTION deals with files to be used in
the object program.

ENVIRONMENT DIVISION STRUCTURE

The structure of this division follows:

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. source-computer-—entry

OBJECT-COMPUTER. object—computer-entry

L SPECIAL-NAMES. special-names—-entry]

L INPUT-OUTPUT SECTION.

FILE-CONTROL. <file—control—entry>...]

The following rules must be observed in the formulation of the
ENVIRONMENT DIVISION.

1. The ENVIRONMEN DIVISION must begin with the reserved words
ENVIRONMENT DIVISION followed by a period and a space.
2. All entries must begin in Area A (columns 8 through 11).

CONFIGURATION SECTION

The CONFIGURATION SECTION contains information concerning the system
to be used for program compilation (SOURCE-COMPUTER), the system to
be used for program execution (OBJECT-COMPUTER), and the
SPECIAL-NAMES paragraph. The SPECIAL-NAMES paragraph is used to
define a special currency sign or decimal point in place of commas.

SOURCE-COMPUTER PARAGRAPH

The SOURCE-COMPUTER paragraph identifies the computer upon which the

VS128C0OBOL Manual 2.6 Page 26

program is to be compiled.
General Format:

SOURCE-COMPUTER. computer—-name.

Syntax Rule:

1. The computer—-name must be equal to Cé4 or C128 followed by
a period and a space.

Example:
SOURCE-COMPUTER. Céb4.
OBJECT-COMPUTER PARAGRAPH

The OBJECT-COMPUTER paragraph identifies the computer on which the
program is to be executed.

General Format:

OBJECT-COMPUTER. computer—name.

Syntax Rules:

1. Computer—-name must be equal to Cé44 or C128 followed by a
period and a space.

SPECIAL-NAMES PARAGRAPH

The SPECIAL-NAMES paragraph provides a means of defining a special
currency sign or the decimal point in place of commas.

General Format:

L CURRENCY SIGN IS literal

[DECIMAL-POINT IS COMMA1 .

SPECIAL-NAMES
Syntax Rules:

1. The literal which appears in the CURRENCY SIGN IS literal
clause is used in the PICTURE clause to represent the currency
symbol. The literal is limited to a single character enclosed in
quotation marks and must not be one of the following characters:

a. Digits O through 9.
b. Alphabetic characters:
c. Special characters: «x

ABCD
+ -, .

- =

P RSV X Z space
() / =

I¥ the CURRENCY SIGN IS clause is not present, the default value

V5128C0OBOL Manual 2.6 Page 27

dollar sign ($) is used in the PICTURE clause.
For example: CURRENCY SIGN IS "E"

2. The clause DECIMAL-POINT IS COMMA means that the functions
of the comma and period are exchanged in the character-string of the
PICTURE clause and in the FILTER-NUMERIC verb. This does not apply
to numeric literals.

VS128COBOL Manual 2.6 Page 28

INPUT-OUTPUT SECTION

The INPUT-OUTPUT section contains information concerning files to be
used by the program, and the manner of recording used.

FILE CONCEPTS

In the following paragraphs, concepts of File Types, Organization,
Access Mode, I-0 Status, INVALID KEY and AT END are discussed
pertaining to Sequential and Relative files.

SEQUENTIAL I-O

Sequential I-0 provides a capability to access records of a file in
established sequence. The sequence is established as a result of
writing the records to the file.

Sequential I-0 provides full facilities for the FILE-CONTROL and FD
entries as specified in the formats of this manual. Within the
FROCEDURE DIVISION, Sequential I-0 provides full capabilities for
the CLOSE, OPEN, READ and WRITE statements.

RELATIVE I-O

Relative I-0 provides the capability to access records of a disk
file in either a random or sequential manner. Each record in a
relative file is uniquely identified by an integer value greater
than zero which specifies the record’s logical ordinal position in
the file.

Relative I-0 has full facilities for the FILE-CONTROL and FD entries
as specified in the formats of this manual. Within the PRECEDURE
DIVISION, the I-0 provides full capabilities for the CLOSE, OPEN,
READ, and WRITE statements.

ORGANIZATION

Sequential Files are organized such that each record in the file
except the first has a unique predecessor record, and each record
except the last has a unique successor record. These
predecessor-successor relationships are established by the order of
WRITE statements when the file is created. Once established, the
predecessor-successor relationships do not change except in the case
where records are added to the end of the file.

Relative File organization is permitted only on disk storage
devices. A Relative File consists of records which are identified
by relative record numbers. The file may be thought of as composed
of a serial string of areas, each capable of holding a logical
record. Each of these areas is denominated by a relative record
number. Records are stored and retrieved based on this number. For
example, the tenth record is the one addressed by relative record
number 10 and is in the tenth record area, whether or not records
have been written in the first through the ninth record areas. The
maximum size of a relative logical record is 254 characters.

ACCESS MODE

VS128COBOL Manual 2.6 Page 29

The ACCESS MODE clause specifies the manner in which records are
accessed in a file. Sequential and Relative File access methods are
discussed in the following paragraphs.

SEQUENTIAL FILES

In the sequential access mode, the sequence in which records are
accessed is by the ascending order of ordinal location within the
file.

RELATIVE FILE

In the sequential access mode, the sequence in which records are
accessed is the ascending order of the relative record numbers of
all records which currently exist within the file.

In the random access mode, the sequence in which records are
accessed is controlled by the programmer. The desired record is
accessed by placing its relative record number in a relative key
data item.

I-0 STATUS

I¥ the FILE STATUS clause is specified in a file control entry, a
value is placed into the specified two-character data item during
the execution of an OPEN, CLOSE, READ, or WRITE statement to
indicate to the VS128COBOL program the status of that input-output
operation.

The usage of this feature is strongly recommended. The testing of
I-0 status after each I-0 statement will avoid a good deal of
confusion when debugging.

STATUS KEY 1

The leftmost character position of the FILE STATUS data item is
known as status key 1 and is set to a value which indicates one of
the following conditions upon completion of the input-output
operation.

VALUE CONDITION
o Successful Completion
1 At End
2 Invalid Key
3 Permanent Error
Q VS128C0OBOL-Defined Condition

The above conditions are defined in following text.

SUCCESSFUL COMPLETION

The input-output statement was successfully executed.

V5128C0OBOL Manual 2.6 Page 30

AT END

The sequential READ statement is unsuccessfully executed as a result

of an attempt to read a record when no next logical record exists in
the file.

INVALID KEY

The input-output statement was unsuccessfully executed as a result
of one of the following:

1. A READ statement when the contents of the RELATIVE KEY data
item are less than 1 or greater than the ordinal number of the last
record ever written to the file, or trying to READ a relative file
record which was never written to.

2. A WRITE statement when the contents of the RELATIVE KEY
data item are less than 1 or greater than the last record allowed to
be written because of the specification of a maximum file size.

PERMANENT ERROR

The input-output statement was unsuccessfully executed as the result
of a boundary violation for a sequential file or as the result of an
input-output error, such as data check parity error.

STATUS KEY 2

The rightmost character position of the FILE STATUS data item is
known as status key 2 and is used to further describe the results of
the input-output operations. This charcter contains a value as
follows:

1. If no further information is available concerning the
input-output operation, then status key 2 contains a value of O.

2. When status key 1 contains a value of 2 indicating an
INVALID KEY condition, status key 2 is used to designate the case of
that condition as follows:

a. A value of 3 in status key 2 indicates no record found.
An attempt is made to access a record, identified by a key, but that
record does not exist in the file.

b. A value of 4 in status key 2 indicates a boundary
violation. An attempt was made to write beyond the externally
defined boundaries of the file.

3. When status key 1 contains a value of 9 indicating a
VS128C0BOL-defined condition, the value of status key 2 indicates
the condition as follows:

STATUS KEY 2
VALUE CONDITION
0 This is a Commodore exception which is displayed on

the screen. See your Commodore User’s Guide for additional
information.

VS§128C0OBOL Manual 2.6 Page 31

1 Attempted to OPEN or CLOSE when file was already
opened or closed.

2 Devise not present or powered on.

3 Attempted READ or WRITE when file was not opened or

not opened properly. A READ must be opened INPUT or I-0. A WRITE
must be opened OUTPUT or I-0.

4 Attempted READ when previous READ resulted in an end
of file condition.

VALID COMBINATIONS OF STATUS KEYS 1 and 2

The valid permissible combinations of the values of status key 1 and
status key 2 are shown in Table S5-1.

TABLE S-1. STATUS KEY COMBINATIONS

STATUS STATUS
KEY 1 KEY 2

Successful completion

AT END

INVALID KEY, no record found
INVALID KEY, boundary violation
Permanent error

Commodore error

OPEN CLOSE error

Devise not present/ready

READ or WRITE with OPEN error
READ after end of file

OO0 IO IOUNN=O
PUAUNOOPWOO

VS128C0OBOL Manual 2.6 Page 32

FILE-CONTROL PARAGRAPH

The FILE-CONTROL paragraph names each file and allows specification
of other file-related information.

General Format:

FILE-CONTROL. {file-control—entry} caa

FILE CONTROL ENTRY

The file control entry names a file and may specify other
file-related information.

VS128C0OBOL Manual 2.6 Page 33

INPUT-0OUTPUT SECTION.

FILE-CONTROL.

SELECT file name

DISK-1541 DRIVE-8

PRINTER-1525

PRINTER

-
L ORGANIZATION IS SEQUENTIAL 1

L ACCESS MODE IS SERBUENTIAL

e o o s e e e —— — — — — — — — ——

ORGANIZATION IS RELATIVE]

ACCESS MODE IS SEQUENTIAL [RELATIVE KEY IS data—name-2]

RANDOM RELATIVE KEY 1S data—-name-2

LFILE STATUS IS data-name-11] .

VS128C0O0BOL Manual 2.6 Page 34

Syntax Rules:

l. The SELECT clause must be specified first in the file

control entry. The clauses which follow the SELECT clause may
appear in any order.

2. Each file described in the DATA DIVISION must be named only
once with a file—-name in the FILE-CONTROL paragraph. Each file
specified in the file control entry must have a file description
entry in the DATA DIVISION.

3. If the ACCESS MODE clause is not specified, the ACCESS MODE
IS SEQUENTIAL clause is implied.

4. Data-name-1 must be defined in the DATA DIVISION as a
two—-character data item of the category alphanumeric and must not be
defined in the FILE SECTION or the COMMUNICATION SECTION.

S. If no ORGANIZATION IS clause is specified, the ORGANIZATION
IS SEGUENTIAL clause is implied.

6. The RELATIVE KEY phrase may be specified only for disk
storage files.

7. Data-name-2 must not be defined in a record description
entry associated with that file—-name.

8. The data item referenced by data-name-2 must be defined as
an unsigned integer.

General Rules:

1. The ASSIGN clause specifies the association of the file
referenced by file—name to a storage medium. For Relative Files the
storage medium must be a disk file.

2. The ORGANIZATION clause specifies the logical structure of a
file. The file organization is established at the time a file is
created and cannot subsequently be changed.

3. When the access mode of a Relative File is sequential,
records in the file are accessed in the order of ascending relative
record numbers of existing records in the file.

4. When the FILE STATUS clause is specified, a value is moved
by the VS5128C0OBOL system into the data item specified by data—-name-1
after the execution of every statement that references that file
either explicitly or implicitly. This value indicates the status of
execution of the statement. Refer to I-0 Status in this section for
additional information.

S. If the access mode of a Relative File is random, the value
of the RELATIVE KEY data item indicates the record to be accessed.

6. All records stored in a Relative File are uniquely
identified by relative record numbers. The relative record number
of a given record specifies the record’s logical ordinal position in
the file. The first logical record has a relative record number of
1, and subsequent logical records have relative record numbers of 2,
3, 4, and so forth.

7. In a Relative File, the data item specified by data-name-2
is used to communicate a relative record number between the program
and the VS128COBOL system.

8. DISK-1541 and DISK have the same meaning.

9. PRINTER-1525 and PRINTER have the same meaning.

VS128C0O0BOL Manual 2.6 Page 35
Example of Environment Division Coding:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. CéA4.
OBJECT-COMPUTER. Cé4.
SPECIAL-NAMES. DECIMAL-POINT IS COMMA.
INPUT-0UTPUT SECTION.
FILE-CONROL. SELECT PRINTOUT ASSIGN TO PRINTER-1525.
SELECT FILE1 ASSIGN TO DISK-1541 DRIVE-8B
ORGANIZATION IS RELATIVE
ACCESS MODE RANDOM
RELATIVE KEY IS REL-KEY
FILE STATUS IS FILE-ST.

VS§128COBOL Manual 2.6 Page 36

SECTION &
DATA DIVISION

GENERAL

The DATA DIVISION describes the data that the object program is to
accept as input, to manipulate, to create, or to produce as output.
Data to be processed belongs to these three categories:

1. That which is contained in files and enters or leaves the
internal memory of the computer from a specified area or areas.

2. That which is developed internally and placed into
intermediate or working storage, or placed into specific format for
output reporting purposes.

3. Constants which are defined by the user.

DATA DIVISION DRGANIZATION

The DATA DIVISION, which is one of the required divisions in a
program, is subdivided into sections. These are FILE and
WORKING-STORAGE.

The FILE SECTION defines the structure of data files. Each file is
defined by a file description entry and one or more record
descriptions. Record descriptions are written immediately following
the file description entry.

The WORKING-STORAGE SECTION describes records and noncontiguous data
items which are not part of external data files but are developed
and processed internally. It also describes data items whose values
are preassigned in the source program.

DATA DIVISION STRUCTURE

The following structure shows the general format of the sections of
the DATA DIVISION, and defines the order of presentation in the
source program.

DATA DIVISION.

—

FILE SECTION.

i file—-description—-entry [record-description—-entry] eee ass

WORKING-STORAGE SECTION.

record-description—-entry

[%7—leve1—description—entry]

- -
FILE SECTION

In a V5128C0BOL program, the file description entry (FD) represents

VS128C0OBOL. Manual 2.6 Page 37

the highest level of organization in the FILE SECTION. The FILE
SECTION header is followed by a file description entry consisting of
a level indicator (FD), a file-name, and a series of independent
clauses. The FD clauses specify the size of the logical records,
the presence or absence of label records and the value of label
items. The entry is terminated by a period.

RECORD DESCRIPTION

A record description consists of a set of data description entries
which describe the characteristics of a particular record. Each
data description entry consists of a level-number followed by a

data-name (if required), followed by a series of independent clauses
as required.

Examples:
01 DATA-ITEM-ONE PICTURE IS X(10).
03 LINE-COUNTER PIC 999.

A record description has a hierarchical structure and, therefore,
the clauses used with an entry may vary considerably, depending upon
whether or not it is followed by subordinate entries. The structure
of a record description is defined in Concepts of Levels, Section 2,
while the elements allowed in a record description are shown in the
data description structure.

FILE DESCRIPTION STRUCTURE

The file description entry furnishes information concerning the
physical structure and identification pertaining to a given file.

[FD file—-name

RECORD IS STANDARD

L VALUE OF FILE-ID IS literal-11

<record—description—entry> sesd aea

LABEL RECORDS
The LABEL RECORDS clause specifies whether labels are present.

Syntax Rules: This clause is required. The clause is treated as
documentation only.

VALUE OF

The VALUE OF clause specifies the file identification of a disk

VS128C0OBOL Manual 2.6 Page 38

file.

Syntax Rules: Literal—-1 must be a nonnumeric literal not greater
than 19 characters. The first three characters must be 90: if the
"replace" feature is desired. Note that relative files cannot be
"replaced". See your Commodore user’s guide for more detailed
information.

General Rules:

1. For an input file, the appropriate label routine checks to
see if the disk drive contains a file name equal to the value of
literal-1.

For an output file, at the appropriate time, the value of
literal—-1 is used to create the disk file name.

Example: VALUE OF FILE-ID IS "MY-FILE"

DATA DESCRIPTION STRUCTURE

A data description entry specifies the characteristics of a
particular item of data. ‘

General Format:

data-name-1
level ~number
FILLER
PICTURE
------- IS character—-string
PIC
L LUSAGE IS1 INDEX]
L OCCURS integer-2 TIMES

[INDEXED BY index—name—1 [index—name-21] cas 1

[VALUE IS CHR literal-21 .

Syntax Rules:

i. The level-number may be any number from O1 through 10 or
77.

VE128C0OBOL Manual 2.6 Page 39

2. The clauses may be written in any order with one exception:
the data—-name-1 or FILLER clause must immediately follow the
level -number.

3. The PICTURE clause must be specified for every elementary
item except an index data item, in which case, use of this clause is
prohibited. The PICTURE clause and character-string must be on the
same line.

General Rules:

1. The PICTURE clauses must not be specified except for an
elementary data item.

DATA-NAME OR FILLER

A data-name specifies the name of the data being described. The
word FILLER specifies an elementary item of the logical record that
cannot be referred to explicitly.

General Format:

data—-name
FILLER

Syntax Rules:

1. 1In the FILE and WORKING-STORAGE SECTIONS, a data-name or
the key word FILLER must be the first word following the
level-number in each data description entry.

General Rules:

l. The key word FILLER may be used to name an elementary item
in a record. Under no circumstances can a FILLER item be referred
to explicitly.

2. The key word FILLER is not allowed with a level 77 item or
with a VALUE clause.

LEVEL-NUMBER

The level-number shows the hierarchy of data within a logical
record. In addition, it is used to identify entries for working
storage items.

General Format:

level -number

Syntax Rules:

l. A level—-number is required as the first element in each
data description entry.

2. Data description entries subordinate to an FD must have
level—numbers with the values 01 through 10. Refer to the FD file
description in the paragraph entitled File Description Structure.

3. Data description entries in the WORKING-STORAGE SECTION

VS128C0OBOL Manual 2.6 Page 40

must have level-numbers with the values 01 through 10.
General Rules:

1. The level-number 01 identifies the first entry in each
record description. Less inclusive groupings are given higher
numbers (not necessarily successive) up to a limit of 10.

2. A special level-number has been assigned to entries where
there is no real concept of level: the level-number 77 is assigned
to identify noncontiguous working storage data items.

3. Multiple level 01 entries subordinate to any given level
indicator (FD) represent implicit redefinitions of the same area.

VE128C0OBOL Manual 2.6

Examples:

Page 41

The following is an example of record layout which corresponds to

Figure 6-3 showing a record description and the use of level

GRADE BIRTH DATE

numbers.
STUDENT RECORD
STUDENT NO. NAME
LAST FIRST
01 STUDENT-REC.
03 STUDENT-NO PIC 9(6).
03 STUDENT-NAME.
05 LAST-NAME PIC X(8).
05 FIRST-NAME PIC X(5).
03 GRADE PIC 99.
03 BIRTH-DATE.
0S5 BIRTH-MONTH PIC 99.
05 BIRTH-DAY PIC 99.
0S5 BIRTH-YEAR PIC 99.
Figure 6-3 Level Numbers

mth day yr

VS128C0BOL Manual 2.6 Page 42

OCCURS

The OCCURS clause eliminates the need for separate entries for
repeated data items and supplies information required for the
application of subscripts or indices.

General Format:

OCCURS integer-2 TIMES

[INDEXED BY index—name-1 [index—name-2J] ...

Syntax Rules:

1. An INDEXED BY phrase is required if the subject of this
entry, or an entry subordinate to this entry, is to be referred to
by indexing.

2. The OCCURS clause cannot be specified in a data description
entry that has an 01 or 77 level-number.

3. Index—-name-1, index-name-2,... must be unique words within
the program.

4. Integer-2 cannot be zero and cannot be greater than 9,999.

General Rules:

l. The OCCURS clause is used in defining tables and other
homogeneous sets of repeated data items. Whenever the OCCURS clause
is used, the data-name which is the subject of this entry must be
either subscripted or indexed whenever it is referred to in a
statement. Further, if the data-name associated with the OCCURS
clause is the name of a group item, then all data-names belonging to
the group must be subscripted or indexed when used as operands.
Refer to Subscripting, Indexing, and Identifier in Section 2.

2. Except for the OCCURS clause, all data description clauses
associated with an item whose description includes an OCCURS clause
apply to each occurrence of the item described.

3. The VALUE clause is not allowed with the OCCURS clause.

PICTURE

The PICTURE clause describes the general characteristics and editing
requirements of an elementary item.

General Format:
JPICTURE
] IS character-string

Syntax Rules:

1. A PICTURE clause can be specified only at the elementary
item level.

VS128COBOL Manual 2.6 Page 43

2. A character-string consists of certain allowable
combinations of characters in the VS128C0OBOL character set used as
symbols. The allowable combinations determine the category of the
elementary item.

3. The maximum number of characters allowed in the
character-string is 30.

4. The PICTURE clause must appear in every elementary item
except those items whose USAGE is declared as INDEX.

S. PIC is an abbreviation for PICTURE.

General Rules:

1. There are five categories of data that can be described
with a PICTURE clause; alphabetic, numeric, alphanumeric,
alphanumeric edited, and numeric edited.

2. To define an item as alphabetic:
a. The PICTURE character-string can only contain the
symbol ’A%.
b. The item contents, when represented in standard data
format, must be any combination of the 26 letters of the English
alphabet and the space from the computer character set.

3. To define an item as numberic:

a. The PICTURE character-string can only contain the
symbols *9°’, ’S’, and ’V’. The number of digit positions that can
be described by the PICTURE character—-string must range from 1 to 18
inclusive.

b. If unsigned, the item contents must be a combination of
the numberals ’0’, *1°, *2°, *3*, *4°, °5*, *&*, *7°, 8%, and *9’;
if signed, the item may also contain a ’+’ or °-°.

4. To define an item as alphanumeric:

a. The PICTURE character-string is restricted to certain
combinations of the symbols ’A’, °’X’, ’9’, and the item is treated
as if the character-string contained all X’s. A PICTURE
character-string which contains all A’s or all 9’s does not define
an alphanumeric item.

b. The item contents are allowable characters in the
computers.

S. To define an item as alphanumeric edited:

a. The PICTURE character-string is restricted to certain
combinations of the following symbols: *A’, °X*, ’9’, °’B’, 70%, and
’/’I

1) The character-string must contain at least one ’B’
and at least one ’X’ or at least one *0° (zero) and at least one ’X’
or at least one */* (stroke) and at least one *X’.

2) The character-string must contain at least one ’0’
(zero) and at least one *A’ or at least one ’/’ (stroke) and at
least one ’A’.

b. The contents are allowable characters in the computer

VS128COBOL Manual 2.6 Page 44

character set.
6. To define an item as numeric edited:

a. The PICTURE character—-string is restricted to certain
combinations of the symbols °B*, */°, *V*, *Z°, *0°, *Q@°, *,?
.7y X7, ’+*, *=?, ’CR’, ’DB’, and the currency symbal ($). The
allowable combinations are determined from the order of precedence
of symbols and the editing rules.

1) The number of digit positions that can be
represented in the PICTURE character-string must range from 1 to 18
inclusive.

2) The character-string must contain at least one 07,
’B,, ’/’, ’z,, ’*” ?+’, ,, ” ’- ,’ ,_’, ’CR” ’DB!, or currency
symbol.

b. The contents of the character positions of these
symbols that are allowed to represent a digit in standard data
format must be one of the numerals.

7. The size of an elementary item, where size means the number
of character positions occupied by the elementary item in standard
data format, is determined by the number of allowable symbols that
represent character positions. An integer which is enclosed in
parentheses following the symbols: ’*A°, *, *, ’X*, *9*, *Z°, *x°,
B’y /7y 707, 47, *=7, or ’$’ indicates the number of consecutive
occurrences of the symbol. The maximum value of this integer is
?,999. The following symbols may appear only once in a given
PICTURE: *S*, *V’, *. ’, ’CR’, and ’DB’.

8. The functions of the symbols used to describe an elementary
item are explained as follows:

,A’
Each letter ’A’ in the character-string represents a

character position which can contain only a letter of the alphabet
or a space.

’B’
Each letter ’B’ in the character-string represents a
character position into which the space character will be inserted.

’S,

The letter °S’ is used in a character—-string to indicate
the presence of an operational sign in the internal representation
of a numeric data item. It must be the first (leftmost) character
in the character-string.

When an operational sign is specified the sign is
maintained and expected in the zone of the most significant
(leftmost) character. When the data item is the receiving field in
an arithmetic statement the four zone bits are set to binary 0101
for negative values and to binary 0100 for positive values. When
the data item is used in an algebraic comparison or operation to
supply an algebraic value, only the most significant zone being a
binary 0101 will cause the value of the data item to be considered

VS128C0OBOL Manual 2.6 Page 45

negative. Only the zone values 0100 and 0101 will qualify the data
item as being NUMERIC if tested by the NUMERIC class condition.

,v’

The letter ’V’ is used in a character-string to indicate
the location of the assumed decimal point and may only appear once
in a character-string. The °*V’ does not represent a character
position and is not counted in the size of the elementary item.

When the assumed decimal point is to the right of the rightmost
symbol in the string, the ’V’ is redundant.

?x’
Each letter ’X in the character-string is used to
represent a character position which contains any allowable
character in the character set.

’Z’

Each letter ’Z’ in a character-string may only be used
to represent the leftmost leading numeric character positions which
are replaced by a space character when the contents of that
character positions are zero. Each ’Z” is counted in the size of
the item.

’9’
Each numeral °9’ in the character-string represents a
character position which contains a numeral and is counted in the
size of the item.

’o’
Each numeral ’0’ in the character-string represents a
character position into which the numeral zero is inserted. The ’0’
is counted in the item.

’/’
Each stroke ’/° in the character-string represents a
character position into which the stroke character is inserted. The -
*/’ is counted in the size of the item.

> 3
’

Each comma ’,’ in the character-string represents a
character position into which the character ’,’ is inserted. This
character position is counted in the size of the item. The insertion
character ’,’ must not be the last character in the PICTURE
character-string.

2 b
L]

When the character period °.’ appears in the
character—-string it is an editing symbol which represents the
decimal point for alignment purposes and in addition, represents a
character position into which the character ’.’ is inserted. The
character ’.” is counted in the size of the item. For a given
program the functions of the period and comma are exchanged if the
clause DECIMAL-POINT IS COMMA is stated in the SPECIAL-NAMES
paragraph. In this exchange the rules for the period apply to the
comma and the rules for the comma apply to the period when appearing

V§128C0OBOL Manual 2.6 Page 46

in a PICTURE clause. The insertion character °.° must not be the
last character in the PICTURE character-string.

’+’ | ’CR’ ’DB,

These symbols are used as editing sign control symbols
and when used, represent the character position into which the
editing sign control symbol will be placed. The symbols are mutually
exclusive in any one character-string and each character used in the
symbol is counted in determining the size of the data item.

’*’

Each asterisk "%’ in the character-string represents a
leading numeric character position into which an asterisk is placed
when the contents of that position are zero. Each %X’ is counted in
the size of the item.

Scs’

The currency symbol *$’ in the character-string
represents a character position into which a currency symbol is
placed. The currency symbol in a character-string is represented by
either the dollar sign ’$’ or by the character specified in the
CURRENCY SIGN clause in the SPECIAL-NAMES paragraph. The currency
symbol is counted in the size of the item.

EDITING RULES:

1. There are two general methods of performing editing in the
PICTURE clause, either by insertion or by suppression and
replacement. The four types of insertion editing available are:

a. Simple insertion
b. Special insertion
c. Fixed insertion
d. Floating insertion

There are two types of suppression and replacement editing:

a. Zero suppression and replacement with spaces
b. Zero suppression and replacement with asterisks

2. The type of editing which may be performed upon an item is
dependent upon the category to which the item belongs. Table 6-1
specifies which type of editing may be performed upon a given
category:

Table 6-1. Editing for Each Item Category

Category Type of Editing
Alphabetic None
Numeric None
Alphanumeric None
Alphanumeric Edited Simple insertion *0°’, °B’, and */’
Numeric Edited All, subject to Editing Rule 3

3. Floating insertion, and editing by zero suppression and

VvS128C0OBOL Manual 2.6 Page 47

replacement, are mutually exclusive in a PICTURE clause. Only one
type of replacement may be used with zero suppression in a PICTURE
clause.

4. Simple Insertion Editing. The *,” (comma), °B’ (space),
0’ (zero), and ’/’ (stroke) are used as the insertion characters.
The insertion characters are counted in the size of the item and
represent the position in the item into which the character is
inserted.

S. Special Insertion Editing. The ’.’ (period) is used as the
insertion character. In addition to being an insertion character it
also represents the decimal point for alignment purposes. The
insertion character, used for the actual decimal point, is counted
in the size of the item. The use of the assumed decimal point,
represented by the symbol ’V’ and the actual decimal point,
represented by the insertion character, in the same PICTURE
character-string is disallowed. The result of special insertion
editing is the appearance of the insertion character in the item in
the same position as shown in the character—-string.

6. Fixed Insertion Editing. The currency symbol and the
editing sign control symbols, °’+°, *’-°, ’CR’, ’'DB’, are the
insertion characters. Only one currency symbol and only one of the
editing sign control symbols can be used in a given PICTURE
character—-string. The symbols *CR’ or DB’ always represent two
character positions in determining the size of the item and must
represent the rightmost character positions counted in the size of
the item. The symbol ’+’ or -’ when used, must be either the
leftmost or rightmost character position to be counted in the size
of the item. The currency symbol must be the leftmost character
position to be counted in the size of the item except that it can be
preceded by either a "+’ or ’-’ symbol. Fixed insertion editing
results in the insertion character occupying the same character
position in the edited item as in the PICTURE character-string.
Editing sign control symbols produce the results shown in Table 6-2
depending upon the value of the data item.

Table 6-2. Editing of Sign Control Symbols

Result
Editing Symbol in Data Item Data Item
PICTURE Character-String Positive or Zero Negative
+ + -
- space -
CR 2 spaces CR
DB 2 spaces DB

7. Floating Insertion Editing. The currency symbol and
editing sign control symbols ’+” or -’ are the floating insertion
characters and are mutually exclusive in a given PICTURE
character—-string.

Floating insertion editing is indicated in a PICTURE
character-string by using a string of at least two of the floating
insertion characters. This string of floating insertion characters

VS128C0O0BOL Manual 2.6 Page 48

may contain any of the fixed insertion symbols or have fixed
insertion characters immediately to the right. These simple
insertion characters are part of the floating string.

The leftmost character of the floating insertion string
represents the leftmost limit of the floating symbol in the data
item. The rightmost character of the floating string represents the
rightmost limit of the floating symbols in the data item.

The second floating character from the left represents the
leftmost limit of the numeric data that can be stored in the data
item. Nonzero numeric data may replace all the characters at or to
the right of this limit.

In a PICTURE character-string, there are only two ways of
representing floating insertion editing. One is to represent any or
all of the leading numeric character positions on the left of the
decimal point by the insertion character. The other is to represent
all of the numeric character positions in the PICTURE
character-string by the insertion character.

If the insertion characters are only to the left of the
decimal point in the PICTURE character-string, the result is that a
single floating insertion character is placed into the character
position immediately preceding either the decimal point or the first
nonzero digit in the data represented by the insertion symbol
string, whichever is farther to the left in the PICTURE
character-string. The character positions preceding the insertion
character are replaced with spaces.

If all numeric character positions in the PICTURE
character-string are represented by the insertion character, the
result depends upon the value of the data. 1If the value is zero,
the entire data item will contain spaces. If the value is not zero,
the result is the same as when the insertion character is only to
the left of the decimal point.

To avoid truncation, the minimum size of the PICTURE
character-string for the receiving data item must be the number of
characters in the sending data item, plus the number of nonfloating
insertion characters being edited into the receiving data item, plus
one for the floating insertion character.

8. Zero Suppression Editing. The suppression of leading
zeroes in numeric character positions is indicated by the use of the
alphabetic character *Z° or the character *%x’ (asterisk) as
suppression symbols in a PICTURE character-string. These symbols
are mutually exclusive in a given PICTURE character-string. Each
suppression symbol is counted in determining the size of the item.
If *Z* is used the replacement character is the space, and if the
asterisk is used the replacement character will be *%x’.

Zero suppression and replacement is indicated in a PICTURE
character-string by using a string of one or more of the allowable
symbols to represent leading numeric character positions which are
to be replaced when the associated character position in the data
contains a zero. Any of the simple insertion characters embedded in

VS128C0OBOL Manual 2.6 Page 49

the string of symbols or to the immediate right of this string are
part of the string.

In a PICTURE character-string, there are only two ways of
representing zero suppression. One is to represent any or all of
the leading numeric character positions to the left of the decimal
point by suppression symbols. The other is to represent all of the
numeric character positions in the PICTURE character-string by
suppression symbols.

If the suppression symbols appear only to the left of the
decimal point, any leading zero in the data which corresponds to a
symbol in the string is replaced by the replacement character.
Suppression terminates at the first nonzero digit in the data
represented by the suppression symbol string or at the decimal
point, whichever is encountered first.

If all numeric character positions in the PICTURE
character-string are represented by suppression symbols, and the
value of the data is not zero, the result is the same as if the
suppression characters were only to the left of the decimal point.
If the value is zero and the suppression symbol is ’Z’, the entire
data item will be spaces. If the value is zero and the suppression
symbol ’x’, the data item will be all asterisks except for the
actual decimal point.

?. The symbols *+°’, *-*, ’x*, *Z°, and ’%’, when used as
floating replacement characters, are mutually exclusive within a
given character-string.

10. At least one of the symbols ’A’, *X*, ’Z’, ’9’ or ’x’, or

at least two of the symbols °*+’, - or ’cs’ must be present in a
PICTURE string.

V§128C0BOL

Examples:

Manual 2.6

Page 50

The following Table 6-3 demonstrates the editing function of the
PICTURE Clause.

Table 6-3.

Source Area

Editing Application of the PICTURE Clause

Receiving Area

Picture

?(3)
?(3)Vv99
§9(3)
SVI (3)
§2(5)
S(SHV
?(3)
g2 (3)
§9(3)
?(3)V99
82 (3)
S9(35)
?(3)Vv99
?(S)
?(3)
?(3)Ve9
?(3)Vee
(39
?(3)
(D)
2(3)
(3
2(3)Vve9
(3
Ve (3)
Ve ()
?(3)

NN NN
11+
N N

Data

12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
00123
12345
00001
00000
12345
00001
12345
00012
00123
00000
01234
00000
12345
00000
12345
12345
12345

Editing
Picture Edited Data
00999.00 00345. 00
?9%.BB 123.
$$$$%$%. 99CR $12345.00
------ « 99 -12.34
$3$$$%$%. 99CR $12345. 00CR
-2727279.99 -12345.00
BBB9%.99 45.00
127229.99- 12345.00
21229.99- 12345. 00~
999.00 123.00
—-—99999.99 -00123.00
1272729.99+ 12345. 00+
$%$%, $5%. 9% $.01
$772,727.1212
$$$,$$9.99 $12,345.00
$272,7272.99 $.01
$$%,$$9.99 $123.45
$22,229.99 $ 0.12
$XX, XX9.99 $xx%x123.00
$XX, XXX, XX XXXXXXX. XX
$XX, XX2,.99 $%x1,234.00
$$%,$$%.$%
$22,229.99 $ 123.45
$$%,$$9.99 $0.00
$772,229.99 $ 0.12
$$%,$$9. 99 $0.12
$22,729.99 $12,345.00

vS128C0OBOL Manual 2.6 Page S1

USAGE

The USAGE clause specifies the format of a data item in the computer
storage.

General Format:

[USAGE IS1 INDEX

Syntax Rules:

1. An index data item can be referenced explicitly only in a
SET statement or a relation condition.
2. The OCCURS, PICTURE, or VALUE clauses cannot be used to

describe group or elementary items described with the USAGE IS INDEX
clause.

General Rules:

1. An elementary item described with the USAGE IS INDEX clause
is called an index data item and contains a value which must
correspond to an occurrence number of a table element.

The group item is considered to be a group data item whose
class is alphanumeric and may be referenced any place in the syntax
acceptable for such an item. The size of the group item is
considered to be in terms of characters, six characters for each
subordinate index data item.

2. An index data item can be part of a group which is referred
to in an MOVE, or input—-output statement, in which case no
conversion takes place.

VALUE

The VALUE clause defines the value of constants and the initial
value of working-storage items.

General Format:
Format 1:

VALUE IS literal

Format 2:

VALUE IS CHR literal-2

Syntax Rules;

1. The VALUE clause cannot be stated for any item that has the
key word FILLER or one which has an OCCURS clause or subordinate to
an item which has an OCCURS clause.

2. A signed numeric literal must have an associated signed

VE128COBOL Manual 2.6 Page 352

numeric PICTURE character-string.

3. All numeric literals in a VALUE clause of an item must have
a value which is within the range of values indicated by the PICTURE
clause, and must not have a value which would require truncation of
nonzero digits. Nonnumeric literals in a VALUE clause of an item
must not exceed the size indicated by the PICTURE clause.

4. Format 2 VALUE clauses must contain a PICTURE clause with a
character-string equal to one X. Literal-2 must be an unsigned
integer between 0 and 255.

General Rules:

l. The VALUE clause must not conflict with other clauses in
the data description of the item or in the data description within
the hierarchy of the item. The following rules apply:

a. If the category of the item is numeric, the literal in
the VALUE clause must be numeric. If the literal defines the value
of a working-storage item, the literal is aligned in the data item
according to the standard alignment rules. Refer to Standard
Alignment Rules in Section 2.

b. If the category of the item is alphabetic,
alphanumeric, alphanumeric edited or numeric edited, all literals in
the VALUE clause must be nonnumeric literals. The literal is
aligned in the data item as if the data item had been described as
alphanumeric. (Refer to Standard Alignment Rules in Section 2.)
Editing characters in the PICTURE clause are included in determining
the size of the data item (refer to the PICTURE clause in this
section) but have no effect on initialization of the data item.
Therefore, the VALUE for an edited item is presented in an edited
form.

2. Rules governing the use of the VALUE clause differ with the
respective sections of the DATA DIVISION:

a. In the FILE SECTION, the VALUE clause may not be used.

b. In the WORKING-STORAGE SECTION the VALUE clause is used
to specify the initial value of the data item, in which case the
clause causes the item to assume the specified value at the start of
the object program. If the VALUE clause is not used in an item
description, the initial value is undefined.

3. The VALUE clause is not allowed at the group level.

4. Format 2 is intended to provide a method of defining
special character codes which are required for display or printer
commands and for testing certain keyboard input characters such as
function keys. Refer to your Commodore User’s Guide relating to
CHR$ codes.

VE128C0OBOL Manual 2.6 Page S3

For Example:
77 RETURN-CODE VALUE IS CHR 13 PIC X.

In the PROCEDURE DIVISION when a DISPLAY RETURN-CODE is
executed the cursor will advance to the next line and then position
to column 1.

S. Format 2 is an extension to the ANSI COBOL-74 standard.
WORKING-STORAGE SECTION

The WORKING-STORAGE SECTION is optional and is that part of the DATA
DIVISION set aside for intermediate processing of data. The .
difference between the WORKING-STORAGE and FILE SECTIONS is that the
former deals with data that is not associated with an input or
output file. All clauses which are used in normal input or output

record descriptions can be used in a WORKING-STORAGE record
description.

WORKING-STORAGE STRUCTURE

Whereas the FILE SECTION is composed of file description (FD)
entries and associated record description entries, the
WORKING-STORAGE SECTION is composed only of record description
entries and noncontiguous items. The WORKING-STORAGE SECTION begins
with the section-header and a period, followed by data description
entries for noncontiguous WORKING-STORAGE items, and/or record
description entries for WORKING-STORAGE records.

Each WORKING-STORAGE SECTION record name and noncontiguous item name
must be unique.

General Example:

WORKING-STORAGE SECTION.
77 data-name-1

77 data—-name-n
o1 data—-name-2
02 data—-name-3

o1 data—-name—-4
02 data—name-5
03 data-name-6

NONCONTIGUOUS WORKING-STORAGE

Items in WORKING-STORAGE which have no hierarchical relationship to
one another need not be grouped into records, provided they do not
need to be further subdivided. These items are classified and
defined as noncontiguous elementary items. Each of these items is
defined in a separate data description entry which begins with the
special level-number 77.

The following record description clauses are required in each entry:

VE128COBOL Manual 2.6 Page 54

Level -number 77
Data—name
The PICTURE clause or the USAGE IS INDEX clause.

The OCCURS clause is not meaningful on a 77 level item and will
cause an error. Other data description clauses are optional and can
be used to complete the description of the item if necessary.

WORKING-STORAGE RECORDS

Data elements and constants in WORKING-STORAGE which have a definite
hierarchic relationship to one another must be grouped into records
according to the rules for the formation of record descriptions.

All clauses which are used in normal input or output record
descriptions can be used in a WORKING-STORAGE description.

INITIAL VALUES

The initial value of any item in the WORKING-STORAGE SECTION except
an index data item is specified by using the VALUE clause with the
data item. The initial value of any index data item is
unpredictable.

CODING THE WORKING-STORAGE SECTION
Figure 6-5 illustrates the coding of the WORKING-STORAGE SECTION

WORKING-STORAGE SECTION.
01 HDG-LINE.
03 FILLER PIC X(52).
03 DN2 PIC A(17) VALUE "SALES PERFORMANCE".

77 DISK-CONTROL PICTURE 2(8).

77 TOTAL-SALES PIC ?(11) VALUE 0.
77 SALES-QUOTA PIC ?(10).

01 STATE-TABLE.

05 STATE-KEY OCCURS 50.
10 STATE-CODE PIC 99.
10 COUNTY PIC 9.
10 CITY PIC 9.

VS128COBOL Manual 2.6 Page 55
SECTION 7
PROCEDURE DIVISION
GENERAL

The PROCEDURE DIVISION must be included in every VS128COBOL source
program. This division must contain at least 1 paragraph.

A paragraph consists of a paragraph-name, followed by a period and a
space, followed by zero, one, or more successive sentences. A
paragraph ends immediately before the next paragraph-name or at the
end of the PROCEDURE DIVISION.

A sentence consists of one or more statements and is terminated by a
period.

A statement is a syntactically valid combination of words and
symbols beginning with a VS128COBOL verb.

The term *identifier’ is defined as the word or words necessary to
make unique reference to a data item.

EXECUTION OF THE PROCEDURE DIVISION

Execution begins with the first statement of the PROCEDURE DIVISION.
Statements are executed in the order of appearance, except where the
user indicates GO TO or PERFORM statements.

PROCEDURE DIVISION STRUCTURE

The PROCEDURE DIVISION is made up of the PROCEDURE DIVISION header
and the PROCEDURE DIVISION body. Descriptions of these follow:

PROCEDURE DIVISION HEADER

The PRECEDURE DIVISION is identified by and must begin with the
following header:

PROCEDURE DIVISION.

FROCEDURE DIVISION BODY

The body of the PROCEDURE DIVISION must conform to the following
format.

{paragraph—name. [sentence] ...> ceaa

STATEMENTS

There are two types of statements; conditional statements and
imperative statements.

CONDITIONAL STATEMENTS
A conditional statement specifies that the truth value of a

condition is to be determined and that the subsequent action of the
object program is dependent on this truth value.

VE128COBOL Manual 2.6

A conditional statement is

Page 56

1. An IF statement.

2. A READ statement that specifies the AT END or INVALID KEY
phrase.

3. A WRITE statement that specifies the INVALID KEY phrase.

4. An arithmetic statement (ADD, DIVIDE, MULTIPLY, SUBTRACT)

that specifies the SIZE ERROR phrase.

5.
IMPERATIVE STATEMENTS

An imperative statement indicates a
be taken by the object program. An
statement that is not a conditional
statement may consist of a sequence
possibly separated from the next by
verbs are:

ACCEPT
ACCEPT-1-KEY
ADD (1)

CLOSE
DEBUG-BREAK
DEBUG-TRACE-OFF
DEBUG-TRACE-ON
DISPLAY

DIVIDE (1)
EXIT

G0

MOVE

MULTIPLY (1)
OPEN

PERFORM

READ (2)

SET

STOP

SUBTRACT (1)
WRITE (3)

A FILTER-NUMERIC statement.

specific unconditional action to
imperative statement is any
statement. An imperative

of imperative statements, each

a separator. The imperative

The numbers in parentheses following some of the verbs have the

following meaning:

Number
1 Without the optional
2 Without the optional
phrase.
3 Without the optional

When ’imperative-statement’ appears

Meaning

SI1ZE ERROR phrase.
AT END phrase or INVALID KEY

INVALID KEY phrase.

in the general format of

statements, it refers to a statement that begins with an imperative

verb and specifies an unconditional
imperative statement may consist of
statements.

action to be taken. An
a sequence of imperative

Imperative statements must be ended by a period, or an

ELSE phrase associated with a previous IF statement.

VS128COBOL Manual 2.6 Page 57

RELATION CONDITION

A relation condition causes a comparison of two operands, each of
which may be the data item referenced by an identifier or a literal.
A relation condition has a truth value of TRUE if the relation
exists between the operands. If either of the operands is a group
item, the nonnumeric comparison rules apply.

General Format:

IS [NOT1 GREATER THAN

>

{identifier-1 >

IS [NOT1 LESS THAN f < identi-Fier—Z?

literal-1 IS [NOTI EQUAL TO literal-2

The first operand (identifier-1 or literal-1) is the subject of the
condition; the second operand (identifier-2 or literal-2) is the
object of the condition. The relation condition must contain at
least one reference to a variable.

When used, NOT and the next key word are one relational operator
that defines the comparison to be executed for truth value; for
example, NOT EQUAL is a truth test for an unequal comparison; NOT
GREATER is a truth test for an equal or less comparison. The
meaning of the relational operators is as follows:

Relational Operator Meaning
IS [NOT! GREATER THAN Greater than or not greater than
IS [NOT1 LESS THAN Less than or not less than
IS [NOT1 EQUAL TO Equal to or not equal to

COMPARISON OF NUMERIC OPERANDS

For operands whose class is numeric, a comparison is made with
respect to the algebraic value of the operands. The length of the
literal in terms of number of digits represented, is not
significant. Zero is considered a unique value regardless of the
sign.

Unsigned numeric operands are considered positive for purposes of
comparison.

COMPARISON OF NONNUMERIC OPERANDS

For nonnumeric operands, or one numeric and one nonnumeric operand,
a comparison is made with respect to a specified collating sequence
of characters. Refer to your Commodore User’s Guide CHR$ codes for
additional information. If one of the operands is specified as
numeric, it must be an integer data item or an integer literal. The
following conditions apply:

VS128C0BOL Manual 2.6 Page 58

1. If the nonnumeric operand is an elementary data item or a
nonnumeric literal, the numeric operand is treated as though it were
moved to an elementary alphanumeric data item of the same size as
the numeric data item (in terms of standard data format characters),
and the contents of this alphanumeric data item are compared to the
nonnumeric operand. Refer to the MOVE statement in this section.

2. If the nonnumeric operand is a group item, the numeric
operand is treated as though it were moved to a group item of the
same size as the numeric data item (in terms of standard data format
characters), and the contents of this group item are compared to the
nonnumeric operand. Refer to the MOVE statement for additional
information.

3. A noninteger numeric operand cannot be compared to a
nonnumeric operand.

4. The operands must be the same size.

Comparison effectively proceeds by comparing characters in
corresponding character positions starting from the high order end
and continuing until either a pair of unequal characters is
encountered or the low order end of the operand is reached,
whichever comes first. The operands are determined to be equal if
all pairs of characters compare equally through the last pair, when
the low order end is reached.

The first encountered pair of unequal characters is compared to
determine a relative position in the collating sequence. The
operand that contains the character that is positioned higher in the
collating sequence is considered to be the greater operand.

COMPARISONS INVOLVING INDEX-NAMES AND/OR INDEX DATA ITEMS
Relation tests may be made between:

1. Two index—-names. The result is the same as if the
corresponding occurrence numbers were compared.

2. An index—-name and a data item (other than an index data
item) or literal. The occurrence number that corresponds to the
value of the index—-name is compared to the data item or literal.

3. An index data item and an index—-name or another index data
item. The actual values are compared without conversion.

The comparison of an index data item with a literal or with any data
item not specified above, is not allowed.

CLASS CONDITION

The class condition determines whether the operand is numeric,
consisting entirely of the characters *0’, *17, 727, °37, ..., 9%,
with or without the operational sign, or alphabetic, consisting
entirely of the characters *A’, °’B’, °C’, ..., °Z’, and space.

VS128C0O0BOL Manual 2.6 Page 59

General Format:

NUMERIC

identifier IS [NOT1 | ALPHABETIC

When used, NOT and the next key word specify one class condition
that defines the class test to be executed for truth value; for
example, NOT NUMERIC is a truth test for determining that an operand
is nonnumeric.

The NUMERIC test cannot be used with an item whose data description
describes the item as alphabetic or as a group item composed of
elementary items whose data description indicates the presence of
operational sign(s). If the data description of the item being
tested does not indicate the presence of an operational sign, the
item being tested is determined to be numeric only if the contents
are numeric and an operationsl sign is not present. If the data
description of the item does indicate the presence of an operational
sign, the item being tested is determined to be numeric only if the
contents are numeric and a valid operational sign is present.

The ALPHABETIC test cannot be used with an item whose data
description describes the item as numeric. The item being tested is
determined to be alphabetic only if the contents consist of any
combination of the alphabetic characters A’ through °Z°’ and the
space character.

COMMON PHRASES

In the statement descriptions that follow, several phrases appear
frequently: the ROUNDED phrase and the SIZE ERROR phrase.

In the following discussion, a resultant-identifier is that
identifier associated with a result of an arithmetic operation.

ROUNDED PHRASE

If, after decimal point alignment, the number of places in the
fraction of the result of an arithmetic operation is greater than
the number of places provided for the fraction of the
resultant-identifier, truncation is relative to the size provided
for the resultant-identifier. When rounding is requested, the
absolute value of the resultant-identifier is increased by adding a
one into the low-order digit whenever the absolute value of the next
least significant digit of the intermediate data item is greater
than or equal to five.

SIZE ERROR PHRASE

If, after decimal point alignment, the absolute value of a result
exceeds the largest value that can be contained in the associated
resultant-identifier, a size error condition exists. Division by
zero always causes a size error condition. The size error condition
applies only to the final results of an arithmetic operation and
does not apply to intermediate results, except in the MULTIPLY and

VS128C0OBOL Manual 2.6 Page 60

DIVIDE statements, in which case the size error condition applies to
the intermediate results as well. If the ROUNDED phrase is
specified, rounding takes place before checking for size error.

When a size error condition occurs, the subsequent action depends on
whether or not the SIZE ERROR phrase is specified.

1. If the SIZE ERROR phrase is not specified and a size error
condition occurs, the resultant value is stored in each of the
receiving fields left truncated where required. Values of
resultant-identifier (s) for which no size error condition occurs are
unaffected by size errors that occur for other
resultant-identifier (s) during execution of this operation.

2. If the SIZE ERROR phrase is specified and a size error
condition occurs, then the values of resultant-identifier (s)
affected by the size errors are not altered. Values of
resultant-identifier (s) size error condition occurs are unaffected
by size errors that occur for other resultant-identifier(s) during
execution of this operation. After completion of the execution of
this operation, the imperative statement in the SIZE ERROR phrase is
executed.

STATEMENT FORMATS
GENERAL RULES FOR STATEMENT FORMATS

The following paragraphs describe general rules for statement
formats.

ARITHMETIC STATEMENTS

The arithmetic statements are ADD, DIVIDE, MULTIPLY, and SUBTRACT
and have several common features:

1. The data descriptions of the operands need not be the same;
any necessary conversion and decimal point alignment is supplied
throughout the calculation.

2. The maximum size of each operand is 1B decimal digits.

3. Each arithmetic operation is evaluated using an
intermediate data item for the result of the operation. The
contents of the intermediate data item are moved to the
resultant-identifier according to the rules for the MOVE statement.
Rounding is performed and the size error conditon is determined only
during this MOVE operation.

INCOMPATIBLE DATA

Except for the class condition (refer to Class Condition in this
section), when the contents of a data item are referenced in the
PROCEDURE DIVISION and the contents of that data item are not
compatible with the class specified for that data item by the
PICTURE clause, then the result of such a reference is undefined.

SPECIFIC VERB FORMATS

The specific verb formats, together with a detailed discussion of
the restrictions and limitations associated with each, appear on the

VS128COBOL Manual 2.6 Page 61

following pages in alphabetic sequence.

VS128C0O0BOL Manual 2.6 Page 62

ACCEPT

The ACCEPT statement is used to input data from the keyboard and
placed in the specified data item.

General Format:

ACCEPT identifier

Syntax Rules:

i. If the identifier describes a numeric item it must be an
integer.

General Rules:

1. The ACCEPT statement causes the transfer of data from the
keyboard. This data replaces the contents of the data item named by
the identifier.

2. The maximum number of characters that can be transferred is
80. The RETURN key terminates the transfer.

3. The ACCEPT statement causes the information requested to be
transferred to the data item specified by identifier according to
the rules of the MOVE statement.

4. As each key is entered it is displayed on the screen at the
current cursor position. The cursor control and insert/delete keys
are active.

VS128COBOL Manual 2.6 Page 63

ACCEPT-1-KEY

The ACCEPT-1-KEY statement is used to input 1 character from the
keyboard and place it in the specified data item. This verb is an
extension to ANSI COBOL-74.

General Format:

ACCEPT-1-KEY identifier

This statement differs from the ACCEPT statement in that it will
enable any one key on the keyboard including function keys. Refer
to your Commodore User’s Guide under CHR$ codes for each key’s
definition. The key entered is not displayed.

VE128C0OBOL Manual 2.6 Page 64

ADD

The ADD statement causes two or more numeric operands to be summed
and the result to be stored.

General Format:
Format 1:

identifier-1 identifier-2
ADD cea
—— literal-1 literal-2

TO identifier-m [ROUNDED 1

Format 2:

identifier-1 identifier-2 identifier-3
ADD csa

literal-1 literal-2 literal-3

GIVING identifier-m [ROUNDED 1

Syntax Rules:

1. In formats 1 and 2, each identifier must refer to an
elementary numeric item, except that in Format 2 the identifier
following the word GIVING must refer to either an elementary numeric
item or an elementary numeric edited item.

2. Each literal must be a numeric literal.

General Rules:

1. Additional rules and explanation relative to this statement
are given in the appropriate paragraphs. Refer to ROUNDED Phrase,
SIZE ERROR Phrase, Arithmetic Statements.

2. If Format 1 is used, the values of the operands preceding
the word TO are added together, then the sum is added to the current
value of identifier—-n storing the result immediately into
identifier-n.

3. If Format 2 is used, the values of the operands preceding
the word GIVING are added together, then the sum is stored as the
new value of identifier—-m, the resultant-identifier.

4. The system ensures that enough places are carried so that
significant digits are not lost during execution.

VS128C0OBOL Manual 2.6

Examples:

Assume as initial values for each ADD:

Format 1:
ADD X TO TOT.

ADD X Y Z TO TOT

Format 2:
ADD X Y GIVING TOT.

ADD X Y Z GIVING TOT

X

=2, Y=10, Z=15,

Results

Results

Results

Results

TOT=52

TOT=77

TOT=12

TOT=27

Page 65

TOT=50.

V§128C0OBOL Manual 2.6 Page &6

CLOSE
General Format:

CLOSE file—-name

The CLOSE statement terminates the processing of a file.

General Rules:

A CLOSE statement may only be executed for a file in an open
mode. Refer to I-0 status under the File Concepts section.

It is very important that you CLOSE files once you have
finished using them. Closing a disk file causes the system to
properly allocate space and update the directory. If you do not
CLOSE the disk file, all of your data will be lost.

VS128C0O0BOL Manual 2.6 Page &7

DEBUG-BREAK

This verb will cause an execution break if the program is
executing in the DEBUG Mode. Refer to the DEBUG Mode sections. The
verb is ignored if not executing in the DEBUG Mode. This verb is an
extension to the ANSI standard.

DEBUG-TRACE-OFF

When executing in the DEBUG Mode this verb will turn off the
trace feature. Refer to the DEBUG section. This verb is ignored if
executing in the .DEBUG Mode. This verb is an extension to the ANSI
standard.

DEBUG-TRACE—-ON

This verb will cause the trace feature to be turned on if
executing in the DEBUG Mode. Refer to the DEBUG Mode section. The
verb is ignored if not executing in the DEBUG Mode. This verb is an
extension to the ANSI standard.

VE128COBOL Manual 2.6 Page &8

DISPLAY

The DISPLAY statement causes the data items to be displayed on the
screen.

General Format:

DISPLAY |identifier-1 identifier-2 | ...

literal-1 literal-2
Syntax Rules:
If the literal is numeric, then it must be an unsigned integer.
General Rules:

1. The DISPLAY statement causes the contents of each operand
to be transferred to the hardware device in the order listed.

2. The maximum number of characters that can be transmitted is
unlimited.

3. When a DISPLAY statement contains more than one operand,
the values of the operands are transferred in the sequence in which
the operands are encountered.

4. For any one data item, if a character code 13 (RETURN) is
encountered the transfer will be terminated after sending the RETURN
code.

9. It is not recommended to DISPLAY an identifier which is
defined as signed numeric. This is due to the fact that the sign
character is combined with the most significant number of the data
item.

6. The display begins at the current cursor location.

VS§128C0OBOL Manual 2.6 Page 69

DIVIDE

The DIVIDE statement divides one numeric data item into others and
sets the values of data items equal to the quotient.

General Formats:
Format 1:

DIVIDE |identifier-1
—————— INTO identifier—-2 [ROUNDED]
literal-1 - mm—————

LON SIZE ERROR imperative—statement]

Format 2:

DIVIDE |identifier-1] |BY identifier-2

literal-1 INTO| |literal-2

GIVING identifier-3 [ROUNDED]

Syntax Rules:

1. Each identifier must refer to an elementary numeric item,
except that the identifier associated with the GIVING phrase must
refer to either an elementary numeric item or an elementary numeric
edited item.

2. Each literal must be a numeric literal.

General Rules:

1. Additional rules and explanations relative to this
statement are given in the appropriate paragraphs. Refer to
Arithmetic Statements, ROUNDED phrase and the SIZE ERROR phrase.

2. When Format 1 is used, the value of identifier-2 is divided
by either the value of identifier—1 or literal-1. The value of the
dividend (identifier-2) is replaced by this quotient.

3. When Format 2 is used, the value of identifier—-1 or
literal-1 is divided by the value of identifier-2 or literal-2, and
the result is stored in identifier-3.

VS128BCOBOL Manual 2.6 Page 70

EXIT

The EXIT statement provides a means of documenting the logical end

point for a series of paragraphs that may be executed under the
control of a PERFORM statement.

General Format:

EXIT.

Syntax Rules:

1. The EXIT statement must appear in a sentence alone.
2. The EXIT sentence must be the only sentence in the
paragraph.

General Rules:
l. An EXIT statement serves only to enable the user to assign

a procedure-name to a given point in a program. Such an EXIT
statement has no other effect on the execution of the program.

VS128COBOL Manual 2.6 Page 71

FILTER-NUMERIC

The FILTER-NUMERIC statement filters and validates alphanumeric
data to numeric data format. This verb is an extension to ANSI
COBOL-74.

General Format:

FILTER-NUMERIC identifier—-1 TO identifier-2

ON ERROR imperative—-statement

Syntax Rules:

1. Identifier—-1 represents the sending area and identifier-2
represents the receiving area.
2. Identifier-2 must be defined as a numeric data item.

General Rules:

l. The contents of identifier—-1 are examined. Valid
characters are O through 2 and the decimal-point. Leading and
trailing space characters are also valid. Only one decimal point
character is allowed and only if there is one or more decimal places
in the receiving fields picture. A decimal point without other
characters is invalid.

2. If the above tests are passed the size of significant data
is evaluated against the size of identifier-2. If there is no size
problem, including decimal alignment, the data is transfered to
identifier-2.

3. If any of the above tests fail the ON ERROR imperative
statement is processed.

4. The DECIMAL POINT IS COMMA clause apples to this statement.

This verb is intended to process data received from the keyboard
(ACCEFT) or other systems.

Examples: The receiving numeric PICTURE is 999V99.

¢ Sending H
: Data Result :
: 123.45 12345 :
: b 00100 :
t (all spaces) 00000 :
H .12 00012 :
: 1 2 ERROR-imbeded space H
. 1234.5 ERROR-size H
: 1.2345 ERROR - size :
H 1.2.3 ERROR - more than 1 decimal point:
H 1A2 ERROR-invalid character :

. ERROR-decimal point only

VS128C0OBOL Manual 2.6 Page 72

GO TO

The GO TO statement causes control to be transferred from one part
of the PROCEDURE DIVISION to another.

General Format:

Format 1:

GO TO I paragraph—-name-11

Format 2:

60 TO paragraph—-name-1 [paragraph-name-2] ... paragraph—-name-n

DEPENDING ON identifier

Syntax Rules:

1. Identifier is the name of a numeric elementary item
described without any positions to the right of the assumed decimal
point.

2. If a GO TO statement, represented by Format 1, appears in a
consecutive sequence of imperative statements within a sentence, it
must appear as the last statement in that sequence.

General Rules:

1. When a GO TO statement, represented by Format 1 is
executed, control is transferred to paragraph-name-l1.

2. When a Format 2 GO TO statement is executed, control is
transferred to the paragraph—-name whose ordinal position in the list
following the GO TO corresponds to the value of the identifier being
1, 2, ..., n. If the value of the identifier is anything other than
the positive or unsigned integers 1, 2, ..., n, then no transfer
occurs and control passes to the next statement in the normal
sequence for execution.

VS128C0OBOL Manual 2.6 Page 73

IF

The IF statement causes a condition to be evaluated. The subsequent
action of the object program depends on whether the value of the
condition is TRUE or FALSE.

General Format:
IF condition |statement-1 ELSE statement-2

NEXT SENTENCE ELSE NEXT SENTENCE

Syntax Rules:

1. Statement-1 and statement-2 must represent an imperative
statement.

2. The ELSE NEXT SENTENCE phrase may be omitted if it
immediately precedes the terminal period of the sentence.

General Rules:

1. When an IF statement is executed, the following transfers of
control occur:

a. If the condition is TRUE, statement-1 is executed, if
specified. If statement-1 contains a procedure branching statement,
control is explicitly transferred in accordance with the rules of
that statement. Refer to Categories of Statements in this section.
If statement-1 does not contain a procedure branching statement, the
ELSE phrase, if specified, is ignored and control passes to the next
executable sentence.

b. If the condition is TRUE and the NEXT SENTENCE phrase is
specified instead of statement-1, the ELSE phrase, if specified, is
ignored and control passes to the next executable sentence.

c. If the condition is FALSE, statement-1 or NEXT SENTENCE is
ignored, and statement-2 if specified, is executed. If statement-2
contains a procedure branching statement, control is explicitly
transferred in accordance with the rules of that statement. Refer to
Categories of Statements in this section. If statement-2 does not
contain a procedure branching statement, control passes to the next
executable sentence. If the ELSE statement-2 phrase is not
specified, statement-1 is ignored and control passes to the next
executable sentence.

d. If the condition is FALSE, and the ELSE NEXT SENTENCE phrase
is specified, statement-1 is ignored, if specified, and control
passes to the next executable sentence.

VS128COBOL Manual 2.6

IF Examples:

IF APPLE IS EQUAL TO RED
DISFLAY "“GOOD"
PERFORM GOOD-APPLE

ELSE PERFORM BAD-APPLE.

IF APPLE EQUAL RED
NEXT SENTENCE
ELSE DISPLAY "BAD"
ADD 1 TO TOT-BAD-APPLES.

IF APPLE NOT EQUAL RED
ADD 1 TO TOT-BAD-APPLES.

Page 74

VS128C0OBOL Manual 2.6 Page 75

MOVE

The MOVE statement transfers data, in accordance with the rules of
editing, to one or more data areas.

General Format:

identifier-1
MOVE TO identifier-2 [identifier-31 ...
——— literal -

Syntax Rules:

1. Identifier-1 and literal represent the sending areaj;
identifier-2, identifier-3,..., represent the receiving area.

2. An index data item cannot appear as an opeerand of a MOVE
statement. Refer to the USAGE clause in Section 6.

General Rules:

l. The data designated by the literal or identifier-1 is moved
first to identifier-2, then to identifier-3, and so on. The rules
governing identifier-2 also apply to the other receiving areas. Any
subscripting or indexing associated with identifier-2 is evaluated
immediately before the data is moved to the respective data item.

Any subscripting or indexing assocaited with identifier-1 is
evaluated only once, immediately before data is moved to the first
of the receiving operands. The result of the statement:

MOVE a (b) TO b c (b)
is equivalent to:

MOVE a (b) TO temp
MOVE temp TO b
MOVE temp TO c (b)

Temp is an intermediate result item provided by the system.

2. Any MOVE in which the sending and receiving items are both
elementary items is an elementary move. Every elementary item
belongs to one of the following categories: numeric, alphabetic,
alphanumeric, numeric edited, alphanumeric edited. These catagories
are described in the PICTURE clause in Section 4. Numeric literals
belong to the category numeric, and nonnumeric literals belong to
the category alphanumeric.

The following rules apply to an elementary move between the
categories:

a. A numeric edited, alphanumeric edited, or alphabetic data
item must not be moved to a numeric or numeric edited data item.

b. A numeric literal, a numeric data item or a numeric edited
data item must not be moved to an alphabetic data item.

€. A noninteger numeric literal or a noninteger numeric data
item must not be moved to an alphanumeric or alphanumeric edited
data item.

d. All other elementary moves are legal and are performed

VS128C0OBOL Manual 2.6 Page 76

according to the rules given in General Rule 3.

3. Any necessary conversion of data from one form of internal
representation to another takes place during legal elementary moves,
along with any editing specified for the receiving data item:

a. When an alphanumeric edited or alphanumeric item is a
receiving item, alignment and any necessary space filling takes
place as defined under Standard Alignment Rules in Section 2. If
the size of the sending item is greater than the size of the
receiving item, the excess characters are truncated on the right
after the receiving item is filled. If the sending item is
described as being signed numeric, the operational sign is not
moved.

b. When a numeric or numeric edited item is the receiving item,
alignment by decimal point and any necessary zero-filling takes
place as defined under the Standard Alignment Rules, except where
zeroes are replaced because of editing requirements.

1) When a signed numeric item is the receiving item, the
sign of the sending item is placed in the receiving item. If the
sending item is unsigned, a positive sign is generated for the
receiving item.

2) When an unsigned numeric item is the receiving item, the
absolute value of the sending item is moved and no operational sign
is generated for the receiving item.

3) When a data item described as alphanumeric is the
sending item, data is moved as if the sending item were described as
an unsigned numeric integer.

€. When a receiving field is described as alphabetic,
justification and any necessary space-filling takes place as defined
under the Standard Alignment Rules. If the size of the sending item
is greater than the size of the receiving item, the excess
characters are truncated on the right after the receiving item is
filled.

5. Any move that is not an elementary move is treated exactly
as if it were an alphanumeric to alphanumeric elementary move,
except that there is no conversion of data from one form of internal
representation to another. In such a move, the receiving area is
filled without consideration for the individual elementary or group
items contained within either the sending or receiving area.

é. The validity of the various types of MOVE statements is
summarized in Table 7-4.

VS128COBOL Manual 2.6 Page 77
Table 7-4. A Valid MOVE Statement
Category of Receiving Data Item
Category of Alphanumeric Numeric Integer
Sending Alphabetic Edited Numeric Noninteger
Data Item Numeric Edited
Alphanumeric
ALPHABETIC YES YES NO
ALPHANUMERIC YES YES YES
ALPHANUMERIC EDITED YES YES NO
NUMERIC INTEGER NO YES YES
NUMERIC NONINTEGER NO NO YES
NUMERIC EDITED NO YES NO

VS128COBOL Manual 2.6 Page 78

MULTIPLY

The MULTIPLY statement causes numeric data items to be multiplied
and sets the valu of a data item equal to the result.

General Format:
Format 1:

MULTIPLY Jidentifier-1| BY identifier—-2 [ROUNDED]
———————— literal-l - ———————

LON SIZE ERROR imperative-statement:

Format 2:

MULTIPLY |identifier-1| BY |identifier-2| GIVING identifier—3
———————— literal-1l - literal-2 ——————

L ROUNDED 1

Syntax Rules:

1. Each identifier must refer to a numeric elementary item,
except that in Format 2 the identifier following the word GIVING
must refer to either an elementary numeric item or an elementary
numeric edited item.

2. Each literal must be a numeric literal.

3. The composite of operands, determined by superimposing all
receiving data items of a given statement, aligned on decimal
points, must not exceed 18 digits.

General Rules:

1. Refer to ROUNDED Phrase, SIZE ERROR Phrase in Arithmetic
Statements in this section for additional rules and information.

2. When Format 1 is used, the value of identifier-1 or
literal-l is multiplied by the value of identifier-2. The value of
the multiplier (identifier-2) is replaced by this product.

3. When Format 2 is used, the value of identifier-1 or
literal-l is multiplied by identifier-2 or literal-2 and the result
is stored in identifier-3.

VE128C0OBOL Manual 2.6 Page 79

OPEN

The OPEN statement initiates the processing of files. It also
performs checking of labels and other operations.

General Format:

OPEN { OUTPUT\ file-name

I-0

Syntax Rules:

1. The I-0 phrase can be used only for disk files. The disk
file must be defined with ORGANIZATION IS RELATIVE and ACCESS MODE
IS RANDOM clauses.

2. OPEN INPUT file—-name must not be a printer file.

General Rules:

1. The successful execution of an OPEN statement determines
the availability of the file and results in the file being in an
open mode.

2. The execution of an OPEN statement does not affect either
the contents or availibility of the file’s record area.

3. When a given file is not in an open mode, no statement that
references that file can be executed successfully.

4. A file may be opened with the INPUT, OUTPUT and I-0 phrases
in the same program. Following the initial execution of an OPEN
statement for a file, each subsequent OPEN statement execution for
that same file must be preceded by the execution of a CLOSE
statement for that file.

9. Execution of the OPEN statement does not obtain or release
the first data record.

é. The beginning labels are processed as follows:

a. When the INPUT phrase is specified, the execution of
the OPEN statement causes the labels to be checked in accordance
with conventions for input label checking.

b. When the OUTPUT phrase is specified, the execution of
the OPEN statement causes the labels to be written in accordance
with conventions for output label writing.

7. The file description entry for the file-name must be
equivalent to that used when this file was created.

8. For files being opened with the INPUT phrase, the OPEN
statement sets the current record pointer to the first record
currently existing within the file.

?. Upon successful execution of an OPEN statement with the
OUTPUT phrase specified, a file is created. At that time the
associated file contains no data records.

VS128COBOL Manual 2.6 Page 80

PERFORM

The PERFORM statement is used to transfer control explicitly to one
or more paragraphs and to return control implicitly whenever
execution of the specified paragraph is complete

General Format: B]
PERFORM paragraph—-name-1 THROUGH paragraph-name-2
"""""" THRU

Syntax Rules: L o —

1. The words THRU and THROUGH are equivalent.

General Rules:

1. When the PERFORM statement is executed, control is
transferred to the first statement of the paragraph named
paragraph—-name—1. This transfer of control occurs only once for
each execution of a PERFORM statement. An implicit transfer of
control to the next executable statement following the PERFORM
statement is established as follows:

a. If paragraph-name-2 is not specified, then the return
is after the last statement of paragraph—-name-1.

b. If paragraph—-name-2 is specified, then the return is
after the last statement of the paragraph-name-2.

2. No particular sequential relationship is required to exist
between paragraph-name-1 and paragraph-name-2. There may be more
than one logical path of program control through the performed range
of paragraphs. A common method, though not a required one, of
documenting the terminal paragraph of a performed range of
paragraphs is through the use of the EXIT statement.

3. An implicit return mechanism is established at the end of a
performed range of paragraphs and is activated by the execution of a
PERFORM statement. Program control reaching an active return
mechanism always returns to the activating PERFORM statement. A
return mechanism permanently deactivates by transferring program
control back to a PERFORM statement. An active return mechanism is
temporarily deactivated by the execution of a PERFORM statement.
Program control always passes through a nonactive return mechanism
to the next executable statement following the PERFORM range.

4. A paragraph executed under the control of a PERFORM
statement may execute PERFORM statements. There is no requirement
that the range of paragraphs executed under the conrol of the nested
PERFORM statement be declared totally within, or disjoint from, the
range of paragraphs executed by the first PERFORM statement. The
permanent deactivation of an active return mechanism causes the last
return mechanism temporarily deactivated to again become active,
allowing overlapping PERFORM ranges, or two or more PERFORM ranges
that have a common exit point, to logically execute the same as
disjoint PERFORM ranges.

Transferring program control, by means of a GO TO statement,
from a range of paragraphs being executed under control of a PERFORM

VE128COBOL Manual 2.6 Page 81

statement does not cause the return mechanism to be deactivated.
This is allowed but this is not considered good programming practice
and should be avoided! Subsequently, transferring program control
back into the PERFORM range causes control to return to the PERFORM
statement, provided that the return mechanism is still active.
Repeatedly branching from a PERFORM range without allowing control
to ever reach an active return mechanism may cause the program to
terminate abnormally by exhausting the resourses allocated to
account for return mechanisms. In such a case, the error message
PERFORM STACK ERROR is displayed

VS5128C0OBOL Manual

Example:

START. PERFORM PARA

PERFORM PARA THRU PARC.

ENDIT. STOP RUN.
PARA. ADD....
PARB. MOVE....
PARC. PERFORM PARB

The execution sequence would be:

START

PARA

PARA

PARB

PARC

ENDIT

2.6

PARB

Page 82

VE128COBOL Manual 2.6 Page 83

READ

For sequential access, the READ statement makes available the next
logical record from a file. For random access, the READ statement
makes available a specified record.

General Format:
Format 1:

READ file—-name RECORD

AT END imperative-statement

Format 2:

READ file-name RECORD

INVALID KEY imperative—-statement

Syntax Rules:

l. Format 1 must be used for all files in sequential access
mode.
2. Format 2 is used for files in random access mode.

General Rules:

1. The associated file must be open in the INPUT or I-0 mode.
Refer to the OPEN statement in this section.

2. The execution of the READ statement causes the value of the
FILE STATUS data item, if any, associated with file—-name to be
updated. Refer to I-0 Status in Sectin S.

3. If, at the time of the execution of a Format 1 READ
statement, no next logical record exists in the file, the AT END
condition occurs, and the execution of the READ statement is
considered unsuccessful. Refer to I-0 Status in Section 5.

4. When the AT END condition is recognized, the following
actions are taken in the specified order:

a. A value is placed into the FILE STATUS data item, if
specified for this file, to indicate an AT END condition. Refer to
I-0 Status in Section S.

b. Control is transferred to the AT END imperative
statement.

€. The execution of the input—output statement which
caused the condition is unsuccessful.

S. Following the unsuccessful execution of any READ statement,
the contents of the associated record area and the position of the
current record pointer are undefined.

6. When the AT END condition has been recognized, a Format 1
READ statement for that file must not be executed without first
executing a successful CLOSE statement followed by the execution of
a successful OPEN statement for that file.

VS128C0OBOL Manual 2.6 Page B84

7. In a Relative File with access mode sequencial declared, if
the RELATIVE KEY phrase is specified, the execution of a Format 1
READ statement updates the contents of the RELATIVE KEY data item so
that it contains the relative record number of the record made
available.

8. For a Relative File with access mode random declared, the
execution of a Format 2 READ statement sets the current record
pointer and makes available the record whose relative record number
is contained in the data item named in the RELATIVE KEY phrase for
the file. 1If the file does not contain such a record, the INVALID
KEY condition exists and execution of the READ statement is
unsuccessful. Refer to the INVALID KEY condition under Invalid Key
in Section 5.

VS128COBOL Manual 2.6 Page B85

SET

The SET statement establishes reference points for table handling
operations by setting index—names associated with table elements.

General Format:

SET identifier-1 TO identifier-3

index—-name-1 index—name-3

A

integer-1

Syntax Rules:
1. Integer-1 may be signed but must be plus.
General Rules:

1. Index—-names are considered related to a given table and are
defined by being specified in the INDEXED BY clause.

2. If index-name-3 is specified, the value of the index before
the execution of the SET statement should correspond to an
occurrence number of an element in the associated table.

If index-name-1 is specified, the value of the index after
the execution of the SET statement should correspond to an
occurrence number of an element in the associated table.

When a statement using the index-name to refer to a table
element is executed, the value in the index or the value produced by
relative indexing must fall within the range specified by the OCCURS
clause defining the table. Otherwise, an abnormal termination of
the program occurs. Refer to Indexing in Section 2.

3. When a SET statement is executed, the following actions
occur:

a. Index-name-1 is set to a value causing it to refer to
the table element that corresponds in occurrence number to the table
element referenced by index—-name-3, identifier-3, or integer-1. If
identifier-3 is an index data item, or if index—-name-3 is related to
the same table as index—name-1, no conversion takes place.

b. If identifier-1 is an index data item, it may be set
equal to either the contents of index—name-3 or identifier-3, where
identifier-3 is also an index data item. No conversion takes place
in either case.

€. If identifier-1l is not an index data item, it may be
set only to an occurrence number that corresponds to the value of
index—-name-3. Neither identifier-3 nor integer-1 can be used in
this case.

4. Data in Table 7-6 represents the validity of various
operand combinations in the SET statement. The general rule
reference (for example, 3b) indicates the applicable general rule.

VS§128C0OBOL Manual 2.6 Page Bé

Table 7-6. SET Statement Combinations

Sending Item Receiving Item

Integer Data Item Index—-Name Index Data Item
Integer Literal No/3c Valid/3a No/3b
Integer Data Item NO/3c Valid/3a No/3b
Index—Name Valid/3c Valid/3a Valid/3bx
Index Data Item No/3c Valid/3ax Valid/3bx

X No conversion takes place

VS128C0BOL Manual 2.6 Page 87

STOP

The STOP statement causes a permanent suspension of the execution of
the object program.

General Format:

STOP RUN

Syntax Rules:

1. If a STOP RUN statement appears in a consecutive sequence
of imperative statements within a sentence, it must appear as the
last statement in that sequence.

General Rules:

1. The ending procedure established by the VS128COBOL system
is instituted.

VS§128C0OBOL Manual 2.6 Page 88

SUBTRACT

The SUBTRACT statement is used to subtract one or the sum of two or
more numeric data items from one item and set the value of one item
equal to the result.

General Format:
Format 1:

SUBTRACT identifier-1 identifier-2| ...FROM identifier—-m

literal-l1 literal-2

© ROUNDED 1

Format 2:

SUBTRACT identifier-1 identifier-2| ...FROM |identifier-m

literal-l1 literal-2 literal—-m

GIVING identifier—-n

Syntax Rules:

1. Each identifier must refer to a numeric elementary item
except that in Format 2, the identifier following the word GIVING
must refer to either an elementary numeric item or to an elementary
numeric edited item.

2. Each literal must be a numeric literal.

General Rules:

1. Additional rules and explanations related to this statement
are given in the appropriate paragraphs. Refer to ROUNDED Phrase,
SIZE ERROR Phrase in Arithmetic Statements in this section.

2. In Format 1, all literals or identifiers preceding the word
FROM are added together, and this total is subtracted from the
current value of identifier-m. The result is immediately stored
into identifier—-m.

3. In Format 2, all literals or identifiers preceding the word
FROM are added together, the sum is subtracted from literal-m or
identifier-m, and the result of the subtraction is stored as the new
value of identifier-m.

VS5128C0OB0OL. Manual 2.6 Page 89

Examples:

Assume as initial values for each subtract
X=2, Y=10, Z=15, TOT=50, and SUB=30.

Format 1:

SUBTRACT X FROM TOT. results TOT=48
SUBTRACT X Y Z FROM TOT. results TOT=23

Format 2:

SUBTRACT X Y FROM SUB GIVING TOT. results TOT=18
SUBTRACT X Y FROM Z GIVING TOT. results TOT=3

V§128C0O0BOL Manual 2.6 Page 90

WRITE

The WRITE statement releases a logical record for an output file.
It can also be used for vertical positioning of lines for a printer.

General Format:
Format 1:

WRITE record-name

LINES

Format 2:

WRITE record-name

Syntax Rules:

1. The record-name is the name of a logical record in the FILE
SECTION of the DATA DIVISION.

2. Integer-1 may not be zero.

3. Format 2 is used for Organization Relative Files.

General Rules:

1. The associated file must be open in the OUTPUT or I-0 mode
at the time of the execution of this statement.

2. The execution of a WRITE statement has no effect upon
either the contents or accessibility of the record area.

3. The execution of the WRITE statement causes the value of
the FILE STATUS data item, if any, associated with the file to be
updated. Refer to I-0 Status in Section S.

4. The maximum record size for a file is established when the
file is created and must not subsequently be changed.

S. The number of character positions on a disk storage device
required to store a logical record in a file may or may not be equal
to the number of character positions defined by the logical
description of that record in the program.

6. The execution of the WRITE statement releases a logical
record to the operating system.

PRINTER FILES

1. The ADVANCING phrase allows control of the vertical
positioning of each line on a printed page. If the ADVANCING phrase
is not used, automatic advancing is provided to act as if the user
had specified AFTER ADVANCING 1 LINE. 1If the ADVANCING phrase is
used, advancing is provided as follows:

VS128C0BOL Manual 2.6 Page 21

a. If integer-1 is specified, the page is advanced the
number of lines equal to the value of integer-l.

b. If the BEFORE phrase is used, the line is written
before the page is advanced.

2. During the transfer of data to the printer, if a character
code 13 (RETURN) is encountered the transfer is terminated after
sending the RETURN code.

DISK FILES
SEQUENTIAL FILES:

1. When an attempt is made to write beyond the externally
defined boundaries of a Sequential File, an exception condition
exists and the contents of the record area are unaffected. The
value of the FILE STATUS data item, if any, of the associated file
is set to a value indicating a boundary violation. Refer to I-0
Status in Section S.

RELATIVE FILES:

1. When a Relative File is opened in the output mode, records
may be placed into the file in one of the following ways:

a. If the access mode is sequential, the WRITE statement
causes a record to be released. The first record has a relative
record number of 1 and subsequent records released have relative
record numbers of 2, 3, 4, and so on. If the RELATIVE KEY data item
has been specified in the file conrol entry for the associated file,
the relative record number of the record just released is placed
into the RELATIVE KEY data item during execution of the WRITE
staement.

b. If the access mode is random, before the execution of
the WRITE statement, the value of the RELATIVE KEY data item must be
initialized in the program with the rélative record number to be
associated with the record in the record area. That record is then
released by execution of the WRITE statement.

2. When a Relative File is opened in the I-0 mode and the
access mode is random, records are to be inserted in the associated
file. The value of the RELATIVE KEY data item must be initialized
by the program with the relative record number to be associated with
the record in the record area. Execution of a WRITE statement then
causes the contents of the record area to be released.

3. The INVALID KEY condition exists when an attempt is made to
write beyond the externally defined boundaries of the file.

VE128C0OBOL Manual 2.6 Page 92

CHAPTER 7
START UP/OPERATING INSTRUCTIONS

The VS128COBOL diskette contains an "auto boot" capability.
Insert the VS128COBOL diskette in drive 8 and just power on the
Commodore 128 system. Messages will appear on the screen as the
loading process takes place. When completed the Main Menu will
appear on the screen. At this point you may remove the VS128COBOL
diskette. The diskette will no longer be needed unless you plan to
RUN the sample programs contained on the diskette.

VE128C0OBOL Manual 2.6 Page 93

CHAPTER 8

MAIN MENU

The VS128COBOL Main Menu is displayed on the screen as follows:
1=EDIT
=RUN
3=DEBUG
4=SAVE
S=GET
6=NEW-PROG/EDIT
7=CRUNCH
B8=PRINT-ON
?=PRINT-0OFF

10=NEW-NAME

At this point enter the number of the function desired followed
by the RETURN key.

The following sections will describe each function in detail.
They appear in alphabetical order for easy reference.

VS128C0OBOL Manual 2.6 Page 94

Main Menu
CRUNCH

The CRUNCH function is used to reduce the memory size of your
program file. A file must be present, refer to GET and NEW-PROG.

While developing your program, each time you delete or change
lines the memory space for the old lines is no longer available for
new lines. This is not a problem unless you exceed the maximum
available memory. At this time or at any time you wish to
consolidate memory (which also reduces the disk file size) invoke
this function.

The processing associated with this function includes writing
to disk a temporary file with the prefix CS (COBOL sequential)
before your file name. eg. CSYOUR-NAME. Once the temporary file is
written, it is then read back into the system. As each line is
written to disk or read back from disk, it will appear on the
screen. At the completion of this task a warning message will
appear which allows you to save the new consolidated program on
disk. The system will then proceed to the Main Menu.

VS128C0OBOL Manual 2.6 Page 95

Main Menu
DEBUG

This function directs the system to begin executing the current
program file in memory. A file must be present, refer to GET or
NEW-PROG. The DEBUG function is similar to the RUN function
described below. In addition to executing your program a number of
powerful debug features are provided which are intended to
facilitate the debugging of your program. All debugging in
VS128COBOL is accomplished at the source (symbolic) language level.
There is no need to be concerned with machine language, memory
addressing or hexadecimal notation.

Before debugging can begin, your program is tested to determine
if it has been successfully syntaxed. If your program had not
previously been syntaxed the syntax process will begin. Refer to
EDIT SYNTAX for additional details. If the syntax process is
unsuccessful the system resumes at the main menu. If successful the
system proceeds with the DEBUG Mode.

At the beginning of DEBUG Mode a "START DEBUG" message will
appear on the screen followed by the DEBUG feature menu.

The following is a list of the DEBUG Menu features. Each one
is described in detail below. Enter the feature number desired
followed by the RETURN key.

1=START-PROG
2=RESUME-PROG
3=SINGLE-ON
4=SINGLE-OFF
S=EXIT
6=BREAK1
7=BREAK2
B8=BREAK3
=0PTIONS
10=TRACE-ON-LINE
11=TRACE-OFF-LINE
12=TRACE-FAST
13=TRACE-SLOW
14=TRACE-ON
15=TRACE-OFF
16=RESET-0PTIONS

VS128C0OBOL Manual 2.6 Page 96

DEBUG Menu
START-PROG

This selection will cause your program to begin executing at
the first PROCEDURE DIVISION statement in your program. Your
program is initialized with its starting VALUE clauses as required.
To simplify debugging, all other data items are initialized to the
numeral 9. During execution, if your program references a data item
which you did not properly initialize, the 9’s will be obvious;
otherwise you would see strange characters on the screen for a
DISPLAY statement or as a function of the trace feature.

V5128C0OBOL Manual 2.6 Page 97

DEBUG Menu
RESUME-PROG

This selection allows you to continue execution from the point
where it was before entering the debug menu state.

This selection cannot be used when starting a program, or after
a STOP RUN verb, you must use the START-PROG.

VS128C0OBOL Manual 2.6 Page 98

DEBUG Menu
SINGLE-ON

This selection turns on the "single step" feature. Single
stepping allows you to step through your program execution one
statement at a time. Once your program begins executing (see
START-PROG or RESUME-PROG) each statement will display S=NNNNNN
where N is equal to the line number of the statement followed by the
statement. At this point depress the RETURN key to execute the next
statement. Any other key will direct the system to the DEBUG Menu.
This feature will also automatically turn on the trace feature,
refer to TRACE-ON. Comment lines are ignored during execution.

SINGLE-OFF

The single step feature described above is turned off. The
trace feature is also turned off.

VS128C0O0BOL Manual 2.4 Page 99

DEBUG Menu

EXIT

This selection will direct the system to exit the DEBUG Mode
and proceed to the VS128COBOL Main Menu.

VS128C0O0BOL Manual 2.6 Page 100

DEBUG Menu
BREAK1 BREAKZ2 BREAK3

A selection of the break feature allows you to enter a)
statement line number which when executed will cause the system to
enter the DEBUG Menu state. Note that this occurs before execution
of the statement in the selected line number. The screen will
contain a B=NNNNNN where N is equal to the line number. The system
provides for one to three line numbers plus the verb DEBUG-BREAK
which you can place in your program as required. Comment lines are
ignored during execution.

VS128COBOL Manual 2.6 Page 101
DEBUG Menu
OPTIONS

The selection of this feature directs the system to display the
current state of all DEBUG Menu options.

VS128C0OBOL Manual 2.6 Page 102

DEBUG Menu
TRACE-ON-L INE

A selection of this feature allows you to enter a statement
line number which when executed will cause the system to turn on the
trace feature. Refer to TRACE-ON for additional information.

TRACE-OFF-LINE

A selection of this feature allows you to enter a statement
line number which when executed will cause the system to turn off
the trace feature. Refer to TRACE-ON and TRACE-OFF for more
details.

VS128COBOL Manual 2.6 Page 103

DEBUG Menu
TRACE-FAST

The TRACE-FAST feature displays all trace information at full
speed. This is the default setting for the trace feature.

TRACE-SLOW

The TRACE-SLOW feature provides for slowing down the speed of
the trace display such that it is more readable during execution.

V8128COBOL Manual 2.6 Page 104

DEBUG Menu
TRACE-ON

The selection of the TRACE-ON feature provides for information
to be displayed during execution of your program. The TRACE-ON
feature is a default setting.

As each statement is executed the system displays T=NNNNNN
followed by the statement; where N is equal to the statement line
number. All comment lines are ignored during tracing. If the
statement being traced has a receiving data item such as MOVE A TO B
then C= is displayed followed by the new contents of the data item.
The size of the display is limited to 18 characters. If the
receiving field is a numeric data item the contents display is
enhanced to include the sign (+-) if present and the letter ’V’ in
the assumed decimal point position.

Example:

The contents of data item A is equal to +1.2. The picture of B is
equal to S99V?9. The line number of the statement is 000100.

T=000100 MOVE A TO B
C=+01V20

In addition to the TRACE-ON and TRACE-ON-LINE features, the
system provides a DEBUG-TRACE-ON verb which you can insert in your
program as required.

While tracing is in process you can use the NO SCROLL key to
stop and start the trace display.

TRACE-OFF

The trace feature described above is turned off. There is also
a DEBUG-TRACE-OFF verb for this purpose which you can insert in your
program as required.

VS128C0OBOL Manual 2.6 Page 105

DEBUG Menu
RESET-0PTIONS

The selection of this feature is used to reset all DEBUG
options to their default settings:

TRACE-ON

TRACE-FAST

BREAK1=NONE, etc.

VS128C0OBOL Manual 2.6 Page 106

Main Menu
EDIT

The EDIT function is used to enter your VS128COBOL statements.
A set of EDIT functions are also provided to facilitate the editing
process:

DIRECTORY list the disk directory
LIST list lines on screen
DELETE delete lines

SYNTAX syntax analysis

AUTO auto line numbers

SAVE save program on disk
RESEQUENCE renumber all lines
PRINT-ON set printer on
PRINT-OFF set printer off

EXIT exit to main menu

When the START EDIT message appears on the screen you can begin
entering VS5128COBOL Statements or EDIT-Functions.

VS128C0OB0OL Statements

Start by entering a six digit line number followed by the
remainder of your statement. Refer to the section titled Editing
Format for additional information. Each line must be terminated by
the RETURN key before it is processed by the system. The Commodore
cursor control keys are enabled including the insert/delete keys.
Refer to your Commodore User’s BGuide for more details. If you are
using a TV or 40 Column Monitor one line on the screen is 40
characters, a VS128COBOL line can be up to 80 chracters, which would
occupy 2 lines on the screen. To replace a line you may simply type
the new line with the same line number as the line your are
replacing. The EDIT-LIST function described below can be used to
view your text. You can, for example, list a line or series of
lines, and then type any changes needed followed by the RETURN key.
Inserting lines is accomplished by typing a line number which falls
between two existing lines. Deleting lines is accomplished by the
EDIT-DELETE function described below.

While entering VS128COBOL statements some validation of the
text is performed. 1If an error is detected INVALID ENTRY is
displayed. If this message should appear, review the entry you have
just typed and make any necessary corrections.

Example:
If you enter -

ADD A TO 1B

the INVALID ENTRY message will appear because 1B is not a valid
VE128C0BOL word.

Additional validation (Syntax Analysis) is performed at another
time.

VS128C0OBOL Manual 2.6 Page 107

EDIT-Function

DIRECTORY

The DIRECTORY function will list the disk directory on the
screen. The abbreviation DIR can be used or the F3 key.

VE128C0OB0OL Manual 2.6 Page 108

EDIT-Function
LIST
The LIST function has the following format:
LIST ([starting-line-number]l Cending-line-number)

1. If no line numbers are present then the entire file is
displayed.

2. If only one line number is entered then only that line is
displayed (if present).

3. If two line numbers are entered (at least one space between
the numbers is required) then the first number is interpreted as the
starting line and the second as the ending line number. Note the
ending line number must be greater than or equal to the starting
line number. The lines are displayed if present.

4. The RUN/STOP key can be used to terminate the listing
process or the listing process can be paused by holding down the
SHIFT key.

S. The LIST function can be abbreviated °L’.

6. Leading zeros on line numbers need not be entered.

7. An error message is displayed if invalid line numbers are
entered; such as 12X3 or more than & digits.

VS128C0O0BOL Manual 2.6 Fage 109

EDIT Function
DELETE
The format and validation of DELETE is similar to LIST. This

function deletes the lines indicated. The lines are displayed for
documentation purposes.

VS128C0O0BOL Manual 2.6 Page 110

EDIT Function
SYNTAX

This function performs a complete syntax analysis of your
program. Any errors found will cause the line in error to be
displayed (including the previous 7 lines) and an error message.

For the IDENTIFICATION, ENVIRONMENT and DATA divisions the
syntax analysis process is aborted following the first error
encountered. The PROCEDURE DIVISION is only syntaxed if no errors
are found in the other divisions. All errors are reported in the
PROCEDURE DIVISION.

This function is optional during the EDIT Mode. An automatic
syntax analysis will be forced when you select the RUN or DEBUG Mode
for any program. It has been made available in the EDIT Mode to
allow you to selectively syntax portions of your program as you
develop it.

The syntax analysis process (excluding optional printer time)
will take only a few seconds regardless of the program size.

VE128COBOL Manual 2.6 Page 111

EDIT Function
AUTO

The AUTO function provides for automatic display of the next
line number. The AUTO function has the following format:

AUTO [line—-increment—-valuel

1. The line-number-value must be within the range 1 to 100.

2. If no value is entered then the AUTD function is turned
off.

3. The line number displayed is computed by adding the
line—increment-value to the last line entered into the system.

4. In addition to displaying the new line number, column 12 is
indicated by displaying a large dot. This was provided to
facilitate formatting the line. If no new text is entered in column
12, the large dot will be automatically removed by the system before
validation begins. There is no need for you to type over it.

S. If the automatic increment should cause an overflow, an
error message is displayed and the function is turned off.

VE8128C0O0BOL Manual 2.6 Page 112

EDIT Function
SAVE

The SAVE function causes your program to be saved to disk,
refer to Main Menu SAVE for additional details. It is good practice
to periodically save your program file onto disk in case a problem
with your computer or electrical power develops. It is also good
practice to save your program on a second or third diskette in case
a problem with the diskette develops.

VS128C0OBOL Manual 2.6 Page 113

EDIT Function

RESEQUENCE

The RESEQUENCE function will renumber all lines in your program
by increments of 100.

VE128COBOL Manual 2.6 Page 114

EDIT Function
PRINT-ON PRINT-OFF

This function forces all keyboard input and displays to the
screen to be printed on the printer. The printer must be powered
on. The feature provides for creating program listings, documents
all changes and error messages. For example, if the PRINT-ON is
entered followed by LIST 5000 8000, these lines are displayed on the
screen and printed on the printer. If SYNTAX is selected with the
PRINT-ON, all error messages are printed for later evaluation.

Printing is terminated with the PRINT-OFF function.

These functions are also available from the VS128COBOL Main
Menu selection.

VS128C0OBOL Manual 2.6 Page 115

EDIT Function
EXIT

The EXIT function allows for terminating the EDIT session and
returns processing to the VS128COBOL Main Menu. If the EDIT session
included changing the program file, then a warning message appears,
which will allow files to be saved on disk. Refer to the Main Menu
SAVE function for additional details on saving a file.

VS128COBOL Manual 2.6 Page 116

Main Menu
GET

The GET function is used to get (load) an existing program file
from disk into memory. A message appears on the screen requesting
that a file name be entered. Enter the desired file name (enclosed
in quotation marks) followed by the RETURN key. Messages will
appear during the loading process. The system will return to the
main menu following the loading process.

VE128COBOL Manual 2.6 Page 117

Main Menu
NEW-NAME

The NEW-NAME function provides for the changing of a program
file name. A file must be present, refer to GET or NEW-PROG. A
message appears on the screen requesting that the new file name be
entered. Enter the new file name (enclosed in quotation marks)
followed by the RETURN key. The system then returns to the Main
Menu. This feature is useful when using an existing program as a
basis for a new program.

VS128COBOL Manual 2.6 Page 118

Main Menu
NEW-PROG/EDIT

This function erases any existing program in memory and accepts
& new program name. A message appears on the screen requesting that
a file name be entered. Enter the new program name (enclosed in
quotation marks) followed by the RETURN key. The system then
proceeds as if the EDIT function had been selected from the Main
Menu. Refer to the section on EDIT for additional information.

VE128COBOL Manual 2.6 Page 119

Main Menu
PRINT-0ON PRINT-0OFF

These features force all keyboard input and screen displays to
be printed on the printer. The printer must be powered on. They
are intented for creating program listings, documenting all changes,
menu selections, tracing and error messages.

Printing is terminated with the PRINT-OFF function.

VE128C0OBOL Manual 2.6 Page 120

Main Menu
RUN

This function directs the system to begin executing the current
program file in memory. A file must be present, refer to GET or
NEW-PROG. Before execution can begin your program is tested to
determine if it has been successfully syntaxed.

If it has, the RUN Mode continues. At the beginning of RUN
Mode a "START RUN" message will appear on the screen. Enter any key
to begin execution of your program. When your program execution is
terminated, the system will return to the Main Menu.

If your program had not previously been.successfully syntaxed,
then the syntax process will begin. Refer to EDIT SYNTAX for
additional details. If the syntax process is unsuccessful, the
system resumes at the Main Menu. If the syntax process is
successful, the system proceeds with the RUN Mode as described
above.

VS128C0OBOL Manual 2.6 Page 121

Main Menu

SAVE

The SAVE function provides for the saving of your program onto
disk. A file must be present, refer to GET or NEW-PROG.

Program files are saved in two parts. Each part is prefixed by
Cl1 or C2 before your file name. eg., C1YOURFILE C2YOURFILE. Screen
messages will appear during the saving process. If your file
already exists on the diskette it will automatically be overwritten
by the new file.

VE128COBOL Manual 2.6 Page 122

CHAPTER 9

CONVERTING VS128COBOL TO VS&44COBOL

To convert VS128C0OBOL programs to run on the Commodore &4
(using VS64COBOL) follow the procedures listed below.

1. On the Commodore 128 with VS128COBOL perform the
instructions for the Main Menu CRUNCH function. This creates a
sequential disk file of your program. VYour file name is prefixed by
the letters CS (COBOL Sequential).

2. Obtain a copy of VS64COBOL for your Commodore 6&4.

3. Follow the necessary instructions to load VS564COBOL into
the Commodore é4 until you reach the Main Menu.

4. Enter CRIP then RETURN (CRUNCH input).

5. At this point you will be requested to enter a file name in
quotes. Enter your file name (without the CS), then RETURN.

6. At this point the VSEDIT program overlay will take place
followed by a screen message that allows you to remove the VS&4COBOL
diskette and insert your diskette (the one which you just created
from VS128COBOL). Enter any key to continue.

7. The system will now process your file and return to the
Main Menu. Your VS128COBOL program has now been converted to
VS&4C0OBOL.

VS128COBOL Manual 2.6 Page 123
CHAPTER 10
CONVERTING VS464COBOL TO VS128COBOL

To convert VS64COBOL programs to run on the Commodore 128
(using VS128C0OBOL) follow the procedure listed below.

l. On the Commodore 44 with VS44COBOL perform the instructions
for the Main Menu CRUNCH. This creates a sequential disk file of
your program. Your file name is prefixed by the letters CS (COBOL
Sequential).

2. Follow the necessary instructions to load VS128COBOL on the
Commodore 128 until you reach the Main Menu. Remove the VS128COBOL
diskette and insert your diskette (the one which you just created
with VS64C0OBOL).

3. Enter CRIP then RETURN (CRUNCH input).

4. At this point you will be requested to enter a file name in
quotes. Enter your file name (without the CS) then RETURN.

S. The system will now process your file and return to the
Main Menu. Your VS464COBOL program has now been converted to
V§128C0OBOL. ‘

VS128COBOL Manual 2.6

APPENDIX A

SAMPLE PROGRAM #1

Page 124

The following sample program is an example of one way to write
a VS128C0OBOL program which performs the function of a simple adding
This program is available on the VS128COBOL diskette. It
is recommended that you use the program to get familiar with the

machine.

V6128COBOL system.

exercises below:

000100
000200
000300
000400
000500
000600
000700
000800
000200
001000
001100
001200
001300

001400x%

001500
001600
001700
001800
001200
002000
002100
002200
002300
002400
002500
0024600
002700
002800
002900
003000
003100
003200
003300
003400
003500
003600
003700
003800
003200
004000
004100
004200
004300
004400
004500
004600
004700

IDENTIFICATION DIVISION.
PROGRAM-ID. VS-ADDING-MACHINE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. Cé4.
OBJECT-COMPUTER. Cé&4.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 DISPLAY-LINE.
02 DISP-SPACE PIC X(20) VALUE " .
02 DISP-NUMBER PIC 2Z,72ZZ,Z2Z.99+.
01 ENTRY.
02 ENTRY-TABLE PIC X OCCURS 12 TIMES.
10 DIGITS + 1 DECIMAL POINT + 1 FUNCTION
77 ENTRY-SUB PIC 99.
77 KEY-IN PIC X.
77 TOTAL PIC S9(8)V99 VALUE O.
77 NUMERIC-ENTRY PIC S9(8)V99.
77 CLEAR-HOME-CODE VALUE CHR 147 PIC X.
77 RETURN-CODE VALUE CHR 13 PIC X.
77 RVS-ON-CODE VALUE CHR 18 PIC X.
77 RVS-OFF-CODE VALUE CHR 146 PIC X.
PROCEDURE DIVISION.
START.
DISPLAY CLEAR-HOME-CODE
"START ADDING MACHINE"
RETURN-CODE.
START-ENTRY.
DISPLAY RETURN-CODE
"ENTERz "
MOVE " " TO ENTRY
MOVE 1 TO ENTRY-SUB.
ACCEPT-LOOP.
ACCEPT-1-KEY KEY-IN
DISPLAY KEY-IN
IF KEY-IN IS EQUAL TO "+"
PERFORM PLUS-KEY THRU PLUS-KEY-EXIT
GO TO START-ENTRY.
IF KEY-IN EQUAL "-"
PERFORM MINUS-KEY THRU MINUS-KEY-EXIT
GO TO START-ENTRY.
IF KEY-IN EQUAL "S"
PERFORM SUB-KEY
GO TO START-ENTRY.
IF KEY-IN EQUAL "T"

PERFORM TOT-KEY
G0 TN START-FNTDRV

After studying the program listing try the

KEY

VS128C0OBOL

004200x%
005000
005100
005200
005300
005400
0035500

Manual 2.6

APPENDIX A

SAMPLE PROGRAM #1 continued

MOVE KEY-IN TO ENTRY-TABLE (ENTRY-SUB)

ADD 1 TO ENTRY-SUB
IF ENTRY-SUB IS GREATER THAN 12
PERFORM ERR
GO TO START-ENTRY
ELSE GO TO ACCEPT-LOOP.

005600 PLUS-KEY.

005700
005800
005900
006000
006100
006200
006300
006400

FILTER-NUMERIC ENTRY TO NUMERIC-ENTRY

ON ERROR
PERFORM ERR
GO TO PLUS-KEY-EXIT.
ADD NUMERIC-ENTRY TO TOTAL
MOVE NUMERIC-ENTRY TO DISP-NUMBER
DISPLAY RETURN-CODE
DISPLAY-LINE.

006500 PLUS-KEY-EXIT. EXIT.
006600 MINUS-KEY.

006700
0046800
0046200
007000
007100
007200
007300
007400
007500

FILTER-NUMERIC ENTRY TO NUMERIC-ENTRY

ON ERROR
PERFORM ERR
GO TO MINUS-KEY-EXIT.
MULTIPLY -1 BY NUMERIC-ENTRY
ADD NUMERIC-ENTRY TO TOTAL
MOVE NUMERIC-ENTRY TO DISP-NUMBER
DISPLAY RETURN-CODE
DISPLAY-LINE.

007600 MINUS-KEY-EXIT. EXIT.
007700 SUB-KEY.

007800
007900
008000
008100
008200
008300

IF ENTRY-SUB 1S EQUAL TO 1
MOVE TOTAL TO DISP-NUMBER
DISPLAY RETURN-CODE

DISPLAY-LINE
KEY-IN
ELSE PERFORM ERR.

008400 TOT-KEY.

008500 IF ENTRY-SUB EGUAL 1
008600 PERFORM SUB-KEY
008700 MOVE O TO TOTAL
008800 ELSE PERFORM ERR.
008900 ERR.

002000 DISPLAY RETURN-CODE
002100 RVS-0ON-CODE
009200 "INVALID ENTRY"
009300 RVS-0OFF-CODE.

009400 END-PROG.

Page 1235

vS§128C0O0BOL Manual 2.6 Page 126

APPENDIX A

Exercises for SAMPLE PROGRAM #1

1. Load and execute the program in RUN Mode.
a. From the Main Menu select GET file:
Enter S5 then RETURN
b. Enter the file name in quotes
Enter "VSADDING" then RETURN
At this point the VSADDING program is loaded into memory.
€. Select the RUN program option
Enter 2 then RETURN
At this point a Syntax Analysis will take place (unless
previously RUN) followed by screen messages "START RUN" and "ENTER
RETURN KEY TO ABORT OR ANY OTHER KEY TO CONTINUE".

d. Enter any key other than RETURN to begin executing the
VSADDING program.

e. Enter some entries such as:
123+
456+
S
T

Try some invalid entries such as:

12B3+ (not a number)
12.345+ (too many digits after decimal point

f. To exit the program and return to the Main Menu
Enter E
2. Execute the program in DEBUG Mode.

a. From the Main Menu and with the program already loaded
into memory (Step 1 above).

Enter 3 then RETURN
The DEBUG Menu is displayed at this time.
b. Proceed at this point by selecting TRACE-SLOW.

Enter 13 then RETURN.

VS128C0O0BOL Manual 2.6 Page 127

€. Select the START-PROG option.
Enter 1 then RETURN
The program will start executing with a display of each
VE128COBOL statement as it is being executed. The trace display

will stop when the ACCEPT-1-KEY statement is executed (line #
003400)

d. Now enter some entries as you did in Step 1 above and
try to follow the program execution sequence.

e. Exit the program as you did in Step 1.
Enter E
The system returns to the DEBUG Menu.
f. Return to the Main Menu by selecting EXIT.
Enter S5 then RETURN
3. Try making some changes to the program so that you can
exercise the EDIT Mode. Consider changing the size of the entry or
even simpler, the "START ADDING MACHINE" on line 002600.
a. From the Main Menu select EDIT Mode.
Enter 1 then RETURN
b. List the program on the screen.
Enter LIST then RETURN.
Continue changing and listing as required.
c. To exit the EDIT Mode
Enter EXIT then RETURN
Note the warning message to save the program. You cannot use
the VS128COBOL diskette because it has the write protect tab on.
Insert your own disk to save the program or bypass the save. Now
the Main Menu is present on the screen. Try executing your changes
by following Step 1 or 2 above. This time you will observe that a

Syntax Analysis is being performed, this will occur whenever a
program is changed or when RUN for the first time following a GET.

V§128C0BOL. Manual 2.6 Pagel128

APPENDIX A

SAMPLE PROGRAM #2

The next sample program (BLD-DATAl1) demonstrates one way to
build a sequential disk file from data entered on the keyboard. The
name of the disk data file is "DATAl1". This program is available on
the VS128COBOL diskette. Note that you can not RUN this program
with the VS128COBOL diskette inserted because the write protect tab
is on. You must use one of your diskettes.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. BUILD-DATAL.
000300 AUTHOR. VISIONARY-SOFTWARE.
000400 ENVIRONMENT DIVISION.
000500 CONFIGURATION SECTION.
000600 SOURCE-COMPUTER. Cé4.
000700 OBJECT-COMPUTER. Cé4.
000800 INPUT-OUTPUT SECTION.
0009200 FILE-CONTROL.

001000 SELECT DATA1 ASSIGN TO DISK-1541 DRIVE-B
001100 FILE STATUS IS FILE-ST.
001200 DATA DIVISION.

001300 FILE SECTION.

001400 FD DATA1L

001500 LABEL RECORDS ARE OMITTED
001600 VALUE OF FILE-ID IS "20:DATA1".
001700 01 DATA-RECORD.

001800 02 NAME-FIELD PIC X(20).
001200 02 ADDR-FIELD PIC X(20).
002000 01 DATA-RECORD-2.

002100 02 NAME-FIELD-EXIT PIC X(4).
002200 02 FILLER PIC X(3&).

002300 WORKING-STORAGE SECTION.

002400 77 WRITE-FLAG PIC X VALUE "N".
0023500 77 RVS-ON VALUE CHR 18 PIC X.
002600 77 RETURN-CODE VALUE CHR 13 PIC X.
002700 77 CLEAR-HOME VALUE CHR 147 PIC X.
002800 77 FILE-ST PIC XX.

002900 PROCEDURE DIVISION.

003000 START-UP.

003100 DISPLAY CLEAR-HOME

003200 OPEN OUTPUT DATAL

003300 IF FILE-ST IS NOT EQUAL TO

003400 "O00" DISPLAY "OPEN ERROR"

003500 STOP RUN.

003600 PERFORM GET-DATA-LOOP THRU LOOP-EXIT.
003700 END-IT.

003800 CLOSE DATA1

003200 IF FILE-ST NOT EQUAL TO "OO"

004000 DISPLAY "CLOSE ERROR".

004100 STOP RUN.

VS128C0O0BOL Manual 2.6

APPENDIX A

SAMPLE PROGRAM #2 continued

004200 GET-DATA-LOOP.

004300
004400
004500
004600
004700
004800
004200
005000
005100
005200
005300
005400
005500
005600
005700
005800
005200
006000
006100
006200
006300
006400
006500
006600
0046700
006800
006200
007000

DISPLAY RVS-ON
"ENTER NAME FIELD "
RETURN-CODE
ACCEPT NAME-FIELD
IF NAME-FIELD IS NOT ALPHABETIC
DISPLAY "NOT ALPHA"
RETURN-CODE
GO TO GET-DATA-LODOP.
IF NAME-FIELD-EXIT EQUAL TO
"EXIT" GO TO LOOP-EXIT.
DISPLAY RVS-ON
"ENTER ADDRESS "
RETURN-CODE
ACCEPT ADDR-FIELD
DISPLAY "DATA OK? (Y/N)".
ACCEPT WRITE-FLAG.
IF WRITE-FLAG EGUAL "Y"
PERFORM WRITE-ROUTINE.
GO TO GET-DATA-LOOP.

WRITE-ROUTINE.

WRITE DATA-RECORD.

IF FILE-ST NOT ERUAL TO "OO"
DISPLAY "WRITE ERROR"
STOP RUN.

MOVE " " TO DATA-RECORD.

MOVE "N" TO WRITE-FLAG.

LOOP-EXIT.

EXIT.

Page 129

vS128C0BOL Manual 2.6 Page 130

APPENDIX A
SAMPLE PROGRAM #3

This sample program (LIST-DATA1) allows you to printout the
"DATA1" disk file created by the sample program BUILD-DATAl. This
program and a sample DATAl file are available on the VS128C0OBOL
diskette.

If you do not have a printer try changing the program to use
the screen rather than the printer. On line number 004400 change
the WRITE PRINT-REC to DISPLAY PRINT-REC.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. LIST-DATAL.
000300 AUTHOR. VISIONARY-SOFTWARE.
000400 ENVIRONMENT DIVISION.
000500 CONFIGURATION SECTION.
000600 SOURCE-COMPUTER. Cé4.
000700 OBJECT-COMPUTER. Cé4.
000800 INPUT-DUTPUT SECTION.
000200 FILE-CONTROL.

001000 SELECT DATA1 ASSIGN TO DISK-1541 DRIVE-8
001100 FILE STATUS IS FILE-ST.
001200 SELECT PRINT-FILE ASSIGN TO PRINTER-1525.

001300 DATA DIVISION.

001400 FILE SECTION.

001500 FD DATA1L

001600 LABEL RECORDS ARE OMITTED
001700 VALUE OF FILE-ID IS "DATA1"“.
001800 01 DATA1-RECORD PIC X(40).
001200 FD PRINT-FILE

002000 LABEL RECORDS ARE OMITTED.
002100 01 PRINT-REC PIC X(40).
002200 WORKING-STORAGE SECTION.
002300 77 FILE-ST PIC XX.

002400 PROCEDURE DIVISION.

002500 START-UP.

002600 OPEN INPUT DATAL.

002700 IF FILE-ST NOT EQUAL TO "ooO"
002800 DISPLAY "OPEN ERROR"

002200 STOP RUN.

003000 OPEN OUTPUT PRINT-FILE.

003100 PERFORM READ-WRITE-LOOP THRU LOOP-EXIT.
003200 END-UP.

003300 CLOSE PRINT-FILE.

003400 CLOSE DATAl.

003500 IF FILE-ST NOT EQUAL TO "0OO"
003600 DISPLAY "CLOSE ERROR".
003700 STOP RUN.

003800 READ-WRITE-LOOP.

003200 READ DATA1 AT END GO TO LOOP-EXIT.
004000 IF FILE-ST NOT EQUAL TO "ooO"
004100 DISPLAY "READ ERROR"

004200 STOP RUN.

004300 MOVE DATA1-RECORD TO PRINT-REC.
004400 WRITE PRINT-REC.

004500 MOVE " " TO PRINT-REC.

004600 GO TO READ-WRITE-LOOP.

004700 LOOP-EXIT.

NNAONN v TeT

vE128C0OBOL Manual 2.6 Page 131
APPENDIX B
RESERVED WORDS

All reserved words known to the VS128COBOL System are listed in
this Appendix.

ACCEPT ACCEPT-1-KEY ACCESS ADD ADVANCING AFTER ALPHABETIC AT

AUTHOR BEFORE BY CLOSE COMMA CONFIGURATION CURRENCY DATA

DATE-WRITTEN DEBUG-BREAK DEBUG-TRACE-OFF DEBUG-TRACE-ON

DECIMAL-POINT DEPENDING DISPLAY DIVIDE DIVISION END

ENVIRONMENT EQUAL ERROR FD FILE FILE-CONTROL FILLER

FILTER-NUMERIC FROM GIVING GO GREATER I-0 IDENTIFICATION IF

INDEX IDEXED INPUT INPUT-OUTPUT INSTALLATION INTO INVALID IS

KEY LABEL LESS LINE LINES MODE MOVE MULTIPLY NEXT NOT

NUMERIC OBJECT-COMPUTER OCCURS OF OMITTED ON OPEN

DRGANIZATION OUTPUT PERFORM PIC PICTURE PROCEDURE PROGRAM-ID

RANDOM READ RECORD RECORDS RELATIVE ROUNDED RUN SECURITY

SELECT SENTENCE SEGUENTIAL SET SIGN SIZE SOURCE-COMPUTER

SPECIAL-NAMES STANDARD STATUS STOP SUBTRACT THAN THROUGH THRU

TIMES TO VALUE WORKING-STORAGE WRITE

vE128C0BOL Manual 2.6 Page 132

APPENDIX C

LANGUAGE SUMMARY

IDENTIFICATION DIVISION
PROGRAM-ID
AUTHOR
INSTALLATION
DATE-WRITTEN
SECURITY

ENVIRONEMENT DIVISION
CONFIGURATION SECTION
SOURCE-COMPUTER
OBJECT-COMPUTER
SPECIAL-NAMES
CURRENTY SIGN IS...
DECIMAL-POINT IS COMMA
INPUT-0OUTPUT SECTION
FILE-CONTROL
SELECT...ASSIGN. ..
ORGANIZATION IS SEQUENTIAL
ACCESS MODE IS SEGQUENTIAL
ORGANIZATION IS RELATIVE
ACCESS MODE IS SEQUENTIAL RELATIVE KEY IS ...
ACCESS MODE IS RANDOM RELATIVE KEY IS...
FILE STATUS IS...

DATA DIVISION
FILE SECTION
FD
LABEL RECORDS ARE...
VALUE OF FILE-ID IS...
WORKING STORAGE SECTION
LEVEL-NUMBER. ..FILLER...
PICTURE IS...
USAGE IS...INDEX...
OCCURS...TIMES...
INDEXED BY...
VALUE IS...CHR...

VS128COBOL Manual 2.6 Page 133

LANGUAGE SUMMARY continued

PROCEDURE DIVISION
ACCEPT...
ACCEPT-1-KEY...
ADD...GIVING...ROUNDED ON SIZE ERROR...
CLOSE...
DEBUG-BREAK
DEBUG-TRACE-OFF
DEBUG-TRACE-ON
DISPLAY...
DIVIDE...INTO BY...GIVING...ROUNDED ON SIZE ERROR...
EXIT
FILTER-NUMERIC...
GO TO...DEPENDING ON...
IF...NEXT SENTENCE...ELSE...NEXT SENTENCE...
MOVE...
MULTIPLY...BY...GIVING...ROUNDED ON SIZE ERROR...
OPEN INPUT...OUTPUT...I-O...
PERFORM. ..THRU. ..
READ...AT END...INVALID KEY...
SET...
STOP RUN
SUBTRACT...FROM...GIVING...ROUNDED ON SIZE ERROR...
WRITE...BEFORE/AFTER ADVANCING...LINES...INVALID KEY...

VvS128C0OBOL Manual 2.6 Page 134
SUBGESTION/PROBLEM REPORT

Visionary Software welcomes your comments on its products and
publications.

To:* Visionary Software
v~ Civic Center Office Plaza
25882 Orchard- Lake- Road
Suite L9 |
‘Dept. Product Support A
“Farminton Hills, Michigan 48018

Comments Product:

Manual:

PLEASE PRINT
Name

Title
Company
Street

City

State Zip

